Lecture Notes

Pearls of Algorithms

Part 2: Randomized Algorithms and Probabilistic Analysis

Prof. Dr. Heiko Roglin

Institut fiir Informatik I

u niversitétbonnl

Winter 2011/12
December 5, 2011

Contents

1 Introduction to Smoothed Analysis
1.1 Smoothed Analysis of the Simplex Algorithm
1.2 Mathematical Background,

2 Smoothed Analysis of the 2-Opt Algorithm for the TSP
2.1 Preliminaries e
2.2 Overview of Results

2.3 Smoothed Analysisof 2-Opt

3 Smoothed Analysis of the Knapsack Problem
3.1 The Nemhauser/Ullmann Algorithm
3.2 Probabilistic Input Model o o
3.3 The Expected Number of Pareto Optimal Solutions

3.4 Extensions.

Please send comments and corrections to roeglin@cs.uni-bonn.de.

CHAPTER 1

Introduction to Smoothed Analysis

In theoretical computer science, an algorithm is typically judged by its worst-case perfor-
mance. An algorithm with good worst-case performance is very desirable because it performs
well on all possible inputs. On the other hand, a bad worst-case performance does not neces-
sarily imply that the algorithm performs also badly in practice. The most prominent example
is probably the simplex algorithm for solving linear programs. For most deterministic pivot
rules that have been suggested, examples are known showing that in the worst case the
simplex algorithm can take an exponential number of steps, but the simplex algorithm is
still one of the most competitive algorithms for solving linear programs in practice. It is
fast and reliable even for large-scale instances and for the pivot rules that have been shown
to require an exponential number of iterations in the worst case. Examples on which the
simplex algorithm needs many iterations are quite artificial and occur only very rarely in
practice. This behavior is by no means an exceptional property of the simplex algorithm.
There are many other examples of algorithms that perform badly in the worst case but well
in practice, including algorithms for the knapsack problem and local search heuristics for
various problems.

This might motivate to study the average-case performance rather than the worst case per-
formance. But average-case analyses are often problematic because it is not clear how to
choose a “reasonable” probability distribution on the set of inputs. Many average-case anal-
yses assume a uniform distribution. However, for most problems, instances chosen uniformly
at random do not reflect typical instances. For example, linear programs that are obtained
by choosing each coefficient in the constraint matrix uniformly at random have very special
properties with high probability and are very different from linear programs that occur in
practical applications. Hence, if one shows that an algorithm works well on such random
linear programs, it can still perform badly on typical linear programs that occur in practi-
cal applications. One very illustrative example showing the difference between random and
real-world instances is given in Figure [I.1]

In order to capture the behavior of algorithms on practical inputs better than it is possible by
a worst-case or average-case analysis alone, Spielman and Teng introduced a hybrid of these

Figure 1.1: On the left side, one can see a totally random TV image, which is obviously very
different from a typical TV image, as shown on the right side.

4 1. Introduction to Smoothed Analysis

two models, which they called smoothed analysis [ST04]. The input model in a smoothed
analysis consists of two steps: In the first step, an adversary chooses an arbitrary input. After
that, in the second step, this input is slightly perturbed at random. On the one hand, the
random perturbation rules out artificial worst-case instances. On the other hand, smoothed
analysis, unlike average-case analysis, is not dominated by completely random instances since
the adversary can approximately determine the structure of the instance. Thus, smoothed
analysis circumvents the drawbacks of worst-case and average-case analysis.

One natural way of perturbing linear programs is to add a Gaussian random variable to each
coefficient. The magnitude of this perturbation is parametrized by the standard deviation
o. We assume that also in general the perturbation is parametrized by some value o such
that no perturbation occurs for o = 0, and the (expected) magnitude of the perturbation
grows with o. The smoothed running time of an algorithm depends on the input size and the
perturbation parameter o, and it is defined to be the worst expected running time that the
adversary can achieve. To make this more precise, let A denote an algorithm, let I denote
an input for A, and let C4(I) denote a complexity measure of algorithm A on input I, e.g.,
its running time on I. Let Z,, denote the set of inputs of length n. The worst-case complexity
for inputs of length n is defined as

Cworst — Ca().

A" (n) = max (Ca(l))

Given a probability distribution w, on Z,, the average-case complexity of A for inputs of
length n is

CA"(n) = Erp, [Ca(1)],

where I ~ p, means that I is a random instance chosen according to the distribution .
For an instance I and a magnitude parameter o, let per,(I) denote the random variable
that describes the instance obtained from I by a perturbation with magnitude o, e.g., if T
is a linear program, then per,(I) is the random linear program obtained from I by adding
a Gaussian random variable with standard deviation o to each coefficient. The smoothed
complexity of algorithm A for inputs of length n and magnitude parameter o is defined as

CilmOOth(n? O') — I}Ié%x E [C_A (pera—(I))] .

These definitions are illustrated in Figure [[.2

From the definition of smoothed complexity, one can see that it is a hybrid of worst-case
and average-case analysis and that one can interpolate between these kinds of analyses by
adjusting the parameter o: For ¢ — 0, the analysis becomes a worst-case analysis because
the input specified by the adversary is not perturbed anymore. For ¢ — oo, the analysis
becomes an average-case analysis because the perturbation is so large that the initial input
specified by the adversary is not important anymore. We say that the smoothed complezity
of A is polynomial if C5*°°t(n, o) is polynomially bounded in n and o~1. If the smoothed
complexity of an algorithm is polynomial, then one can hope that the algorithm performs
well in practice, because worst-case instances might exist but they are very fragile with
respect to random influences. With other words, if the smoothed complexity of an algorithm
is low and instances are subject to random noise, then one must be extremely unlucky to hit
a bad instance.

Spielman and Teng [ST04] showed that the smoothed complexity of the simplex algorithm
is polynomial for a certain pivot rule. Since the invention of smoothed analysis in 2001,
many different results on the smoothed analysis of algorithms have been obtained, including

1.1. Smoothed Analysis of the Simplex Algorithm 5

Ca(l)

C-\Xorst (n) ,,,,,,,,,,,,,,,,,,,,,

Ci{nOOth (n o1)
o5 T) [™SS i S
CilmOOth (n7 0.2) 77777777777

caven) Lo oA LT

instances from Z,,

Figure 1.2: Illustration of the different complexity measures. The horizontal axis ranges
over the set of inputs of length n, for some fixed n. It is assumed that o1 < o09. Hence,
CilmOOth(’rl, 0.1) > C;mOOth(n, 0.2).

results on different algorithms for solving linear programs, local search algorithms, various
discrete optimizations problems, and the competitive ratio of online algorithms.

In the remainder of this introductory chapter, we first sketch Spielman and Teng’s smoothed
analysis of the simplex algorithm, and after that we review some facts from probability
theory that will be essential for this part of the lecture. In the coming chapters we will
discuss some results about the smoothed complexity of algorithms in more detail.

1.1 Smoothed Analysis of the Simplex Algorithm

Linear programming is one of the most important problems in mathematical optimization
and operations research. It is interesting from a theoretical point of view because many
problems are shown to be polynomial-time solvable by reducing them to a linear programming
problem. Moreover, linear programming arises in numerous industrial applications. The
importance of linear programming in industrial applications stems in part from the existence
of fast and reliable algorithms for finding optimal solutions. In this section, we describe some
results on the smoothed complexity of the simplex algorithm for solving linear programs.
Since the probabilistic analyses of the simplex algorithm are quite involved, we cannot present
them in full detail here. We merely state the main results and very roughly outline their
proofs.

In a linear programming problem, one is asked to maximize or minimize a linear function
over a polyhedral region. In the following, we assume that the goal is to maximize the linear
objective function

lr = 121 + -+ cqxy

subject to x1,...,x4 € R and the n linear constraints

a1171 +...+ ajqrg < by

an1x1 +...+ an,dxdgbnv

which we will also express shortly as Az < b for A € R"*% and b € R".

6 1. Introduction to Smoothed Analysis

Figure 1.3: Graphical Interpretation of an LP with two variables and four constraints.

Geometry of Linear Programs

The set P of feasible solutions of a linear program is defined by a set of linear inequalities,
ie, P = {x cR?| Az < b}. Let aq,...,a, denote the rows of A, and let by,...,b, denote

the entries of the vector b, the so-called right-hand sides. The set of points from R? that
satisfy a linear equation a;z = b; is called a hyperplane. It is a (d — 1)-dimensional subspace
of R%. The set of points from R? that satisfy a linear inequality a;z < b; is called a halfspace.
Observe that the set of feasible solutions P is the intersection of n halfspaces, a so-called

polytope.

In this graphical interpretation, the objective function ¢’z determines a direction in the
space R?, and the linear program asks to find a point z* from the polytope P that lies as
far in the direction ¢ as possible. This is illustrated in Figure 1.3

Let HS be a halfspace defined by a hyperplane H. If the polytope P is entirely contained in
HS, then the set f =P NH is called a face of P. In the following, we use the term vertex
to denote a face of dimension zero (i.e., a point), and we use the term edge to denote a face
of dimension one (i.e., a line segment).

Algorithms for Linear Programming

The first practical method for solving linear programs was proposed in the late 1940’s by
Dantzig [Dan63]. Dantzig’s simplex algorithm walks along neighboring vertices of the poly-
tope P that is defined by the set of linear inequalities Az < b. It is well known that if a
linear program is neither infeasible nor unbounded, then there exists a vertex of the polytope
that maximizes the objective function. Additionally, every vertex that is locally optimal in
the sense that there does not exist a neighboring vertex with larger objective value can be
shown to be also globally optimal. For a given initial vertex of the polytope, the simplex
algorithm picks in each step a neighboring vertex with better objective value until either a
locally optimal solution is found or unboundedness is detected. The initial feasible solution
is found by the application of the simplex method to a different linear program for which an
initial vertex is known and whose optimal solution is either a vertex of the original polytope
defined by Ax < b or shows that the linear program is infeasible. The simplex method as
described above leaves open the question of which step is made when there is more than
one neighboring vertex on the polytope with larger objective value. The policy according to
which this decision is made is called the pivot rule.

For most deterministic pivot rules that have been suggested, examples are known showing
that in the worst case the simplex algorithm can take an exponential number of steps (see,

1.1. Smoothed Analysis of the Simplex Algorithm 7

e.g., [AZ99]). The observations made in practice tell a different story. The simplex algorithm
is still one of the most competitive algorithms for solving linear programs that occur in
practical applications. It is fast and reliable even for large-scale instances and for the pivot
rules that have been shown to require an exponential number of iterations in the worst case.
Examples on which the simplex algorithm needs many iterations occur only very rarely in
practice.

The question whether optimal solutions of linear programs can be found in polynomial time
has been settled in 1979 by Khachian [Kha79]. He applied the ellipsoid method, originally de-
veloped for solving non-linear optimization problems, to linear programming and proved that
it converges in time polynomial in d, n, and L, where L denotes the number of bits needed
to represent the linear program. Though from a theoretical point of view a breakthrough,
the ellipsoid method is drastically outperformed by the simplex algorithm in practice. The
interior-point method, another method for solving linear programs with polynomial worst-
case complexity, was introduced in 1984 by Karmarkar [Kar84]. In contrast to the ellipsoid
method, the interior point method is competitive with and occasionally superior to the sim-
plex algorithm in practice.

Smoothed Linear Programs

Spielman and Teng [ST04] considered linear programs of the form

maximize clx

subject to (A + G)z < (b+ h),

where A € R™*? and b € R™ are chosen arbitrarily by an adversary and the entries of the
matrix G € R™*?% and the vector h € R" are independent Gaussian random variables that
represent the perturbation. These Gaussian random variables have mean 0 and standard
deviation o - (max;||(b;,@;)||), where the vector (b;,@;) € R¥*! consists of the i-th compo-
nent of b and the i-th row of A and ||| denotes the Euclidean norm, that is, for a vector

uw=(uy,...,w), |[ul| = \/ud + - +u?. Without loss of generality, we can scale the linear

program specified by the adversary and assume that max;||(b;,@;)|| = 1. Then the perturba-
tion consists of adding an independent Gaussian random variable with standard deviation
o to each entry of A and b. Observe that we can replace this two-step model by a one-step
model in which each entry is an independent Gaussian random variable and an adversary is
allowed to choose the means of these random variables.

The Shadow Vertex Pivot Rule

Spielman and Teng analyzed the smoothed running time of the simplex algorithm using
the shadow vertex pivot rule. This pivot rule has been proposed by Gass and Saaty [GS55]
and it has a simple and intuitive geometric description which makes probabilistic analyses
feasible. Let zo denote the given initial vertex of the polytope P of feasible solutions. Since
xo is a vertex of the polytope, there exists an objective function v’z which is maximized
by xg subject to the constraint x € P. In the first step, the shadow vertex pivot rule,
computes an objective function v’z with this property. Using standard arguments from
analytic geometry, one can show that such an objective function can be found efficiently. If
xo is not the optimal solution of the linear program, then the vectors ¢ and u are linearly
independent and span a plane. The shadow vertex method projects the polytope P onto this

8 1. Introduction to Smoothed Analysis

Figure 1.4: The polytope is projected onto the two-dimensional plane spanned by the vectors
c and u.

plane. The shadow, that is, the projection, of P onto this plane is a possibly open polygon
(see Figure|1.4). This polygon has a few useful properties:

The vertex xg is projected onto a vertex of the polygon.

The optimal solution x* is projected onto a vertex of the polygon.

Each vertex of the polygon is the image of a vertex of the polytope.

Each edge of the polygon is the image of an edge between two adjacent vertices of the
polytope.

Observe that the simplex algorithm in dimension two is very easy; it just follows the edges
of the polygon. Due to the aforementioned properties, we can apply the two-dimensional
simplex algorithm to the polygon obtained by the projection, and the walk along the edges
of the polygon corresponds to a walk along the edges of the original polytope. Furthermore,
once the optimal solution on the polygon is found, we can compute its pre-image on the
polytope, which is an optimal solution of the linear program.

The number of steps performed by the simplex algorithm with shadow vertex pivot rule is
upper bounded by the number of vertices of the two-dimensional projection of the polytope.
Hence, bounding the expected number of vertices on the polygon is the crucial step for
bounding the expected running time of the simplex algorithm with shadow vertex pivot rule.
Spielman and Teng consider first the case that the polytope P is projected onto a fixed
plane specified by two fixed vectors ¢ and u. They show the following result on the expected
shadow size, that is, the number of vertices of the polygon.

Theorem 1.1 ([ST04]). Let c € R? and u € R? be independent vectors, and let ay, ..., an €
R? be independent Gaussian random vectors of standard deviation o centered at points of
norm at most 1. Let P = {:/E ceR|Vie{l,...,n}:ax < 1} denote the polytope of feasible
solutions. The number of vertices of the polygon obtained by projecting P onto the plane
spanned by c and u is

o (min(a, ITL/d\?)/M)ES) =0 <p01y (n,d, i)) .

1.2. Mathematical Background 9

Spielman and Teng’s Result

Though Theorem is the main ingredient of the analysis, alone it does not yield a polyno-
mial bound on the smoothed running time of the simplex algorithm. There are three main
obstacles that one has to overcome. First, we have not yet described how the initial feasi-
ble solution is found. Since testing feasibility of a linear program and finding an arbitrary
feasible solution are computationally as hard as solving a linear program to optimality (see,
e.g., [PS98]), this question cannot be neglected. The last two problems that have to be
addressed concern the assumptions in Theorem It is assumed that the right-hand sides
in the constraints are all 1 and furthermore, it is assumed that the vector u is fixed indepen-
dently of the constraints. Both assumptions are not satisfied in the probabilistic model we
consider. Spielman and Teng have shown in a very involved analysis that Theorem can
be applied, regardless of these technical difficulties. Their proof is, however, far too complex
to present it in detail here.

Theorem 1.2 ([ST04]). Let ¢ € R? be chosen arbitrarily, let a1, . .., a, € R? be independent
Gaussian random vectors centered at a1,...,an, and let by, ..., b, be independent Gaussian
random variables centered at by, ..., b,. Let the standard deviation of the Gaussian vectors
and variables be o - max;||(b;,@;)||. Then there exists a polynomial P and a constant o¢ such
that for all 0 < 0g, ¢ € R, @1,...,a, € RY, and b € R™, the expected running time of the
shadow vertex simplex method on the linear program max c’ x subject to Az < b is at most
P(n,d,1/0).

Later, the smoothed analysis of the simplex algorithm was substantially improved by Ver-
shynin [Ver06].

Theorem 1.3 ([Ver(6]). Under the same assumptions as in Theorem[1.d, the expected num-
ber of pivot steps of the shadow vertex simplexr method is at most

0) (max (d5 log? n, d° log* d, d3a—4)) =0 (poly <10g n,d, i)) .

This is a remarkable result because the expected number of pivot steps is only polylogarith-
mic in the number of constraints n while the previous bound was polynomial in n.

1.2 Mathematical Background

In this section, we introduce some notation and review some facts from probability theory.
This section is by no means intended to give an introduction to probability theory. Readers
who are unfamiliar with probability theory are referred to [MR95] and [MUQ5] for computer
science related introductions.

Notation

We define N = {1,2,3,...}. For a natural number n € N, we denote by [n] the set {1,...,n}.
We use Ry to denote the set {x € R | x > 0}. Given a vector z € R", we use x1,...,Z, to
denote its entries, i.e., we assume = = (z1,...,2,). Given two vectors x,y € R", we denote
by x -y their dot product, i.e., z -y = x1y1 + - - - + TnYn. The norm ||z|| of a vector z € R™ is

always meant to be its Euclidean norm, i.e., ||z|| = /22 + -+ + 22 = /7 - 2.

10 1. Introduction to Smoothed Analysis

Expected Values

Let X be a discrete random variables that takes only values in a countable set M C R (e.g.,
M = N). For an element a € M, we denote by Pr [X = a] the probability that X takes value
a. The expected value of X is defined as
E[X] = Z a-Pr[X =d.
aceM
If M C N, we can also write this as

E[X]:iPr[XZa].

a=1
If X describes, for example, the outcome of a dice toss, we have M = {1,2,...,6} and
Pr[X =a] =1/6 for each a € M. Then the expected value of X is
LI
E[X]= - =35
[X] aZ::l :

Let X and Y be two random variables that take only values in M C R. We call X and Y
independent if for any a,b € M

Pri X=aandY =b=Pr[X =a] -Pr[Y =9].

A very helpful fact from probability theory is linearity of expectation. If X and Y are random
variables, then

EX+Y]=E[X]+E[Y].
This equations holds not only for independent random variables X and Y, but also for
dependent random variables.

Useful Inequalities

e The Markov inequality is one of the easiest tools to bound the probability that a random
variable takes a large value: Let X be a random variable that takes only non-negative
values in Ry, and let ¢ > 1. Then

1

Pr(X >a-E[X]]

a

e For random variables that are the sum of independent 0-1-random variables, the Cher-

noff bound yields a much better bound than the Markov inequality: Let X1,..., X, be

independent random variables that take only values in {0, 1}, and let p; := Pr [X; = 1].
Furthermore let X = Y7" | X;. Then, by linearity of expectation,

n

E[X]:ZTZ:E[Xi]:Z(O‘PI’[Xi:O]-Fl-PI‘[Xi:1])2271:]%.

Then, for any 0 < 6 < 1,
Pr[X < (1 - §)E[X]] < exp(-E[X] - §%/2).

e Let Fi,...,F, be some events. The union bound gives an upper bound for the proba-
bility that at least one of these events occurs:

Pr(FiU---UF,| <> Pr[F].
i=1

1.2. Mathematical Background 11

Continuous Random Variables

Now we consider continuous random variables that are not limited to a countable subset
of R. The distribution Fx: R — [0,1] of a real-valued random variable X is the function
defined by Fx(x) = Pr[X < z| for all x € R. If Fx is differentiable, then the derivative
fx: R — Ry of Fx is called the density function of X. For every x € R, it holds

Fy(z) = Pr[X < 2] = /f () dt.

For every a,b € R with a < b, we have

Pr[X € [a,b]] = /ab () dt.

This immediately yields the following observation.

Observation 1.4. Let X be a random wvariable whose density is bounded from above by
¢ > 0, and let I = [a,a + €] denote an arbitrarily fized interval of length ¢ > 0. The
probability that X takes a value in the interval I is bounded from above by £¢.

For a continuous random variable X with density fx, the expected value is defined as

E[X}z/oot-fx(t)dt.

—00

Linearity of expectation and the Markov inequality are also valid for continuous random
variables.

Of particular interest are Gaussian random wvariables. A Gaussian random variable with
expected value p € R and standard deviation o > 0 has density

F@) = —— exp <W> . (1.1)

 o/2n 202

We call the expected value of a Gaussian random variable its mean or center. We also use
the terms d-dimensional Gaussian (random) vector and Gaussian (random) vector in RY
with standard deviation o to denote a d-dimensional vector whose entries are independent
Gaussian random variables with standard deviation 0. We say that a Gaussian vector in R?
has center p € R? if, for i € [d], its i-th entry is a Gaussian random variable with mean ;.

Gaussian random variables are sharply concentrated around their centers, as the following
lemma shows.

Lemma 1.5. Suppose X is a Gaussian random variable with center O and standard deviation
o. Then, for everyt > 1,

12 1. Introduction to Smoothed Analysis

Proof. For t > 1, we obtain

1

ex
o\ 2w

Pr[|X| > :2./
z=t

From Lemma we can conclude the following corollary.

Corollary 1.6. Suppose X is a Gaussian random variable with arbitrary center p € R and
standard deviation o. Then, for everyt > 1,

t2
Pr|| X —pul>t<o- ——F .
X >) <o (<)

CHAPTER 2

Smoothed Analysis of the 2-Opt Al-
gorithm for the TSP

2.1 Preliminaries

An instance of the traveling salesperson problem (TSP) consists of a set V = {vy,...,v,}
of vertices (depending on the context, synonymously referred to as points) and a symmetric
distance function dist: V x V' — Ry that associates with each pair {v;, v;} of distinct vertices
a distance dist(v;, v;) = dist(v;,v;). The goal is to find a Hamiltonian cycle (i.e., a cycle that
visits every vertex exactly once) of minimum length. We also use the term tour to denote a
Hamiltonian cycle.

A pair (V,dist) of a nonempty set V and a function dist: V' x V' — Ry is called a metric
space if for all z,y, z € V the following properties are satisfied:

(a) dist(z,
(b) dist(z,
(c) dist(z,z) < dist(z,y) + dist(y, z) (triangle inequality).

) =0 if and only if z = y (reflexivity),

L w

) = dist(y, x) (symmetry),

If (V, dist) is a metric space, then dist is called a metric on V. A TSP instance with vertices
V and distance function dist is called metric TSP instance if (V,dist) is a metric space.

A well-known class of metrics on R is the class of L, metrics. For p € N, the distance
dist,(z,y) of two points z € R? and y € R? with respect to the L, metric is given by
disty(z,y) = ¢/|z1 — 1P + - + |24 — yaP. The Ly metric is often called Manhattan metric,
and the Lo metric is well-known as Fuclidean metric. For p — oo, the L, metric converges to
the Lo, metric defined by the distance function diste(z,y) = max{|z1 — y1l,...,|zqs — ya|}-
A TSP instance (V,dist) with V' C R? in which dist equals dist, restricted to V is called an
L, instance. We also use the terms Manhattan instance and Fuclidean instance to denote Lq
and Lo instances, respectively. Furthermore, if p is clear from context, we write dist instead
of dist,.

A tour construction heuristic for the TSP incrementally constructs a tour and stops as soon
as a valid tour is created. Usually, a tour constructed by such a heuristic is used as the initial
solution 2-Opt starts with. A well-known class of tour construction heuristics for metric TSP
instances are so-called insertion heuristics. These heuristics insert the vertices into the tour
one after another, and every vertex is inserted between two consecutive vertices in the current
tour where it fits best. To make this more precise, let T; denote a subtour on a subset S; of
i vertices, and suppose v ¢ S; is the next vertex to be inserted. If (z,y) denotes an edge in

13

14 2. Smoothed Analysis of the 2-Opt Algorithm for the TSP

S

Figure 2.1: Example of a 2-change in which the red edges are exchanged with the blue edges.

T; that minimizes dist(x, v) 4 dist(v,y) — dist(z, y), then the new tour Tj;; is obtained from
T; by deleting the edge (z,y) and adding the edges (z,v) and (v,y). Depending on the order
in which the vertices are inserted into the tour, one distinguishes between several different
insertion heuristics. Rosenkrantz et al. [RSI77] show an upper bound of [logn| + 1 on the
approximation factor of any insertion heuristic on metric TSP instances. Furthermore, they
show that two variants which they call nearest insertion and cheapest insertion achieve an
approximation ratio of 2 for metric TSP instances. The nearest insertion heuristic always
inserts the vertex with the smallest distance to the current tour (i.e., the vertex v ¢ S; that
minimizes mingeg, dist(x,v)), and the cheapest insertion heuristic always inserts the vertex
whose insertion leads to the cheapest tour T;41.

2.2 Overview of Results

Despite many theoretical analyses and experimental evaluations of the TSP, there is still
a considerable gap between the theoretical results and the experimental observations. One
important special case is the Euclidean TSP in which the vertices are points in R?, for some
d € N, and the distances are measured according to the Fuclidean metric. This special case
is known to be NP-hard in the strong sense [Pap77], but it admits a polynomial time approxi-
mation scheme (PTAS), shown independently in 1996 by Arora [Ar098] and Mitchell [Mit99].
These approximation schemes are based on dynamic programming. However, the most suc-
cessful algorithms on practical instances rely on the principle of local search and very little
is known about their complexity.

The 2-Opt algorithm is probably the most basic local search heuristic for the TSP. 2-
Opt starts with an arbitrary initial tour and incrementally improves this tour by making
successive improvements that exchange two of the edges in the tour with two other edges.
More precisely, in each improving step the 2-Opt algorithm selects two edges {uj,u2} and
{v1,v2} from the tour such that uq,ug,v1,ve are distinct and appear in this order in the
tour, and it replaces these edges by the edges {uj,v1} and {ug,v2}, provided that this
change decreases the length of the tour (see Figure . The algorithm terminates in a
local optimum in which no further improving step is possible. We use the term 2-change
to denote a local improvement made by 2-Opt. This simple heuristic performs amazingly
well on “real-life” Euclidean instances like, e.g., the ones in the well-known TSPLIB [Rei91].
Usually the 2-Opt heuristic needs a clearly subquadratic number of improving steps until it
reaches a local optimum and the computed solution is within a few percentage points of the
global optimum [JM97].

There are numerous experimental studies on the performance of 2-Opt. However, the the-
oretical knowledge about this heuristic is still very limited. Let us first discuss the number

2.2. Overview of Results 15

of local improvement steps made by 2-Opt before it finds a locally optimal solution. When
talking about the number of local improvements, it is convenient to consider the state graph.
The vertices in this graph correspond to the possible tours and an arc from a vertex v to a
vertex u is contained if u is obtained from v by performing an improving 2-Opt step. On the
positive side, van Leeuwen and Schoone consider a 2-Opt variant for the Euclidean plane in
which only steps are allowed that remove a crossing from the tour. Such steps can introduce
new crossings, but van Leeuwen and Schoone [vL.S81] show that after O(n?) steps, 2-Opt finds
a tour without any crossing. On the negative side, Lueker [Lue75] constructs TSP instances
whose state graphs contain exponentially long paths. Hence, 2-Opt can take an exponential
number of steps before it finds a locally optimal solution. This result is generalized to k-Opt,
for arbitrary k > 2, by Chandra, Karloff, and Tovey [CKT99]. These negative results, how-
ever, use arbitrary graphs that cannot be embedded into low-dimensional Euclidean space.
Hence, they leave open the question as to whether it is possible to construct Euclidean TSP
instances on which 2-Opt can take an exponential number of steps. This question is resolved
by Englert et al. [ERVOT7] by constructing such instances in the Euclidean plane. In chip
design applications, often TSP instances arise in which the distances are measured according
to the Manhattan metric. Also for this metric and for every other L, metric, Englert et al.
construct instances with exponentially long paths in the 2-Opt state graph.

Theorem 2.1 ([ERVQT]). For everyp € {1,2,3,...}U{oo} andn € N={1,2,3,...}, there
is a two-dimensional TSP instance with 16n vertices in which the distances are measured
according to the L, metric and whose state graph contains a path of length ontd _ 99,

For Euclidean instances in which n points are placed independently uniformly at random
in the unit square, Kern [Ker89] shows that the length of the longest path in the state
graph is bounded by O(n'%) with probability at least 1 — ¢/n for some constant c¢. Chandra,
Karloff, and Tovey |[CKT99] improve this result by bounding the ezpected length of the
longest path in the state graph by O(n'°logn). That is, independent of the initial tour
and the choice of the local improvements, the expected number of 2-changes is bounded by
O(n'logn). For instances in which n points are placed uniformly at random in the unit
square and the distances are measured according to the Manhattan metric, Chandra, Karloff,
and Tovey show that the expected length of the longest path in the state graph is bounded
by O(nSlogn).

Englert et al. consider a more general probabilistic input model and improve the previously
known bounds. The probabilistic model underlying their analysis allows different vertices
to be placed independently according to different continuous probability distributions in the
unit hypercube [0, 1]¢, for some constant dimension d > 2. The distribution of a vertex v;
is defined by a density function f;: [0,1]¢ — [0, #] for some given ¢ > 1. Our upper bounds
depend on the number n of vertices and the upper bound ¢ on the density. We denote
instances created by this input model as ¢-perturbed Fuclidean or Manhattan instances,
depending on the underlying metric. The parameter ¢ can be seen as a parameter specifying
how close the analysis is to a worst case analysis since the larger ¢ is, the better worst case
instances can be approximated by the distributions. For ¢ = 1 and d = 2, every point has
a uniform distribution over the unit square, and hence the input model equals the uniform
model analyzed before. These results narrow the gap between the subquadratic number of
improving steps observed in experiments [JM97] and the upper bounds from the probabilistic
analysis.

Englert et al. prove the following theorem about the expected length of the longest path in
the 2-Opt state graph for the probabilistic input model discussed above. It is assumed that
the dimension d > 2 is an arbitrary constant.

16 2. Smoothed Analysis of the 2-Opt Algorithm for the TSP

Theorem 2.2 ([ERV07]). The expected length of the longest path in the 2-Opt state graph

a) is O(n* - ¢) for ¢-perturbed Manhattan instances with n points.
b) is O(n*t1/3 . log(ne) - ¢¥/3) for ¢-perturbed Euclidean instances with n points.

Usually, 2-Opt is initialized with a tour computed by some tour construction heuristic. One
particular class is that of insertion heuristics, which insert the vertices one after another
into the tour. We show that also from a theoretical point of view, using such an insertion
heuristic yields a significant improvement for metric TSP instances because the initial tour
2-Opt starts with is much shorter than the longest possible tour. This observation leads to
the following theorem.

Theorem 2.3 ([ERV07]). The expected number of steps performed by 2-Opt

a) is O(n*=Y4 . logn -) on ¢-perturbed Manhattan instances with n points when 2-Opt
1s initialized with a tour obtained by an arbitrary insertion heuristic.

b) is O(n* 131/ 10g? (ng) - ¢*/3) on ¢-perturbed Euclidean instances with n points when
2-Opt is initialized with a tour obtained by an arbitrary insertion heuristic.

Similar to the running time, the good approximation ratios obtained by 2-Opt on practical in-
stances cannot be explained by a worst-case analysis. In fact, there are quite negative results
on the worst-case behavior of 2-Opt. For example, Chandra, Karloff, and Tovey [CKT99]

show that there are Euclidean instances in the plane for which 2-Opt has local optima whose
log n
loglogn
show that the expected approximation ratio of the worst local optimum for instances with
n points drawn uniformly at random from the unit square is bounded from above by a con-
stant. Their result can be generalized to the input model in which different points can have

different distributions with bounded density ¢ and to all L, metrics.

costs are € () times larger than the optimal costs. However, the same authors also

Theorem 2.4 ([ERVO0T7]). Let p € NU {oo}. For ¢-perturbed L, instances, the expected
approzimation ratio of the worst tour that is locally optimal for 2-Opt is O(J/®).

2.3 Smoothed Analysis of 2-Opt

Is this section, we present a glimpse into the proof of Theorem The complete proof
is too technical to be presented in the lecture in detail, but we will outline the main ideas
by proving a weaker version of the theorem in a simplified random input model. Instead of
choosing n points at random, we assume that an undirected graph G = (V, E) is given. An
adversary can specify an arbitrary density f. : [0,1] — [0, ¢] for every edge e € E. Then the
length dist(e) of edge e € E is drawn independently from the other edge lengths according
to the density f.. For this input model, we prove the following theorem.

Theorem 2.5. For any graph with n vertices, the expected length of the longest path in the
2-Opt state graph is O(n%log(n) - ¢).

Proof. How can we prove an upper bound on the (expected) number of steps made by 2-
Opt? For this, we use the length of the current tour as a potential function. As all edge
lengths lie in the interval [0, 1], any tour (in particular the one 2-Opt starts with) has length

2.3. Smoothed Analysis of 2-Opt 17

at most n. If we knew that every 2-change decreases the length of the current tour by at
least A > 0, then we can bound the number of 2-changes that can be made before reaching
a local optimum from above by n/A because after that many steps the length of the tour
must have decreased to zero. As it cannot get negative, no further local improvement can
be possible.

Hence, if we can show that the smallest possible improvement A is not too small, we have
also shown that 2-Opt cannot make too many steps. Unfortunately, in the worst-case one
can easily construct a set of points that allows a 2-change that decreases the length of the
tour only by an arbitrarily small amount. Our goal is, however, to show that on ¢-perturbed
instances A does not become too small with high probability.

Let us first consider a fixed 2-change in which the edges e; and e; are exchanged with the
edges es and e4. This 2-change decreases the length of the tour by

A(eq, ez, e3,e4) = dist(eq) + dist(ez) — dist(es) — dist(ey). (2.1)
We define A as the smallest possible improvement made by any improving 2-change:

A= min Aler, ea, e3,e4).
61,62763764
A(61,82763,e4)>0

The following lemma, which is proven below, is one crucial ingredient of the proof.

Lemma 2.6. For any ¢ > 0,
Pr[A < ¢] < nleg.

With the help of this lemma we can prove the theorem. We have argued above that the
number of steps that 2-Opt can make is bounded from above by n/A. Let T denote the
maximal number of steps 2-Opt can make. Formally, let T denote the length of the longest
path in the state graph. This number can only be greater or equal to ¢ if

Hence,

5
Pr[TZt]SPr{AS?] gnT¢.

One important observation is that T is always bounded from above by n! because this is an
upper bound on the number of possible tours. Hence, we obtain the following bound for the
expected value of T":

n! n! 5

E[T]—ZPr[TZt]SZntd)—n%.ii.

t=1 t=1

Using that

n!

3 % — O(log(n!)) = O(n log(n))

t=1

yields
E[T] = O(n°¢log(n!)) = O(n®log(n) - ¢). O

To complete the proof of the Theorem, we have to prove Lemma

18 2. Smoothed Analysis of the 2-Opt Algorithm for the TSP

Proof of Lemma[2.6. Again we first consider a fixed 2-change in which the edges e; and ey
are exchanged with the edges es and e4. We would like to bound the probability that the
fixed 2-change is improving, but yields an improvement of at most ¢, for some € > 0. That
is, we want to bound the following probability from above:

Pr[A(e1,e2,e3,e4) € (0,¢]] = Pr[dist(e;) + dist(ez) — dist(e3) — dist(eq) € (0,¢]].

We use the principle of deferred decisions and assume that the lengths dist(es), dist(es),
and dist(e4) have already been fixed arbitrarily. Then the event A(ey, ez, e3,e4) € (0,¢] is
equivalent to the event that

dist(e1) € (k, k + €],

where k = dist(eq) + dist(e3) — dist(ez2) is some fixed value. As dist(e;) is a random variable
whose density is bounded from above by ¢, the probability that dist(e;) assumes a value in
a fixed interval of length ¢ is at most €¢.

This bound makes only a statement about the improvement made by a particular step in
which the edges e; and e are exchanged with the edges e and e4, but we would like make a
statement about every possible 2-change. We apply a union bound over all possible choices
for the edges eq, ..., e4. As these edges are determined by four vertices, the number of choices
is bounded from above by n*, yielding

Pr[A € (0,¢]] < Pr[Jer, ea,e3,e4 : Aler, e2,e3,e4) € (0,¢]] < nteo.

This concludes the proof of the lemma.]

CHAPTER 3

Smoothed Analysis of the Knapsack
Problem

The knapsack problem is one of the classical NP-hard optimization problems. An instance of
the problem consists of a capacity and n objects, each of which having a profit and a weight.
The goal is to find a subset of the objects that obeys the capacity constraint and maximizes
the profit. To make this precise, let ¢ € R, denote the capacity, let p = (p1,...,pn) € R}
denote a vector of profits, and w = (w1,...,w,) € R} a vector of weights. The goal is to
find a vector x = (x1,...,zy,) € {0,1}" such that the objective function

p-x=p1T1+ -+ Pp¥y
is maximized under the constraint

w-xr=wix] + -+ wpry, <t (3.1)

The knapsack problem has been shown to be NP-hard by Karp in 1972 [Kar72]. Since then
it has attracted a great deal of attention, both in theory and in practice. Theorists are
interested in the knapsack problem because of its simple structure; it can be expressed as
a binary program with one linear objective function and only one linear constraint. On
the other hand, knapsack-like problems often occur in practical applications, and hence
practitioners have developed numerous heuristics for solving it. These heuristics work very
well on random and real-world instances of the knapsack problem, and they find optimal
solutions rather quickly. Hence, despite being NP-hard, the knapsack problem is easy to
solve in practice. In this chapter, we present one heuristic for the knapsack problem and
show that its smoothed complexity is polynomial.

3.1 The Nemhauser/Ullmann Algorithm

In the following, we use the term solution to denote a vector z € {0,1}", and we say that a
solution is feasible if it obeys the capacity constraint given in . We say that a solution x
contains the i-th object if x; = 1. One naive approach for solving the knapsack problem is to
enumerate all feasible knapsack solutions and to select the solution with maximum payoff.
Of course, this approach is not efficient as there are typically exponentially many feasible
solutions. In order to decrease the number of solutions that are enumerated, we observe that
a solution z cannot be optimal if it is dominated by another solution 2/, i.e., if the profit of
2’ is larger than the profit of z and the weight of 2’ is smaller than the weight of z. Hence,
it suffices to enumerate only those solutions that are not dominated by other solutions, the
Pareto optimal solutions.

19

20 3. Smoothed Analysis of the Knapsack Problem

Definition 3.1. A solution x is called Pareto optimal if there does not exist a solution x'
such that p-x <p-x’ and w-x > w -2’ with one inequality being strict. The Pareto set is
the set of all Pareto optimal solutions.

Nemhauser and Ullmann [NU69] proposed an algorithm for enumerating the Pareto set of
a given knapsack instance. The running time of this algorithm is polynomially bounded
in the size of the instance and the size of the Pareto set. That is, the algorithm runs in
polynomial time on instances with a polynomial number of Pareto optimal solutions. It
is, however, easy to construct instances of the knapsack problem with exponentially many
Pareto optimal solutions. Hence, not surprisingly, the Nemhauser/Ullmann algorithm is not
polynomial in the worst case, but it works reasonably well in practice.

For a given knapsack instance with n objects, we consider, for i € {0,...,n}, the modified
instance in which only the first ¢ objects are allowed to be inserted into the knapsack.
We denote by P(i) the Pareto set of this modified instance, e.g., P(0) contains only the
solution 0" and P(n) is the Pareto set of the given instance. The algorithm that Nemhauser
and Ullmann propose computes the sets P(0),...,P(n) inductively. Since P(0) is easy to
compute, we can assume that a set P(i — 1) is given and that the goal is to compute P(i).
Furthermore, we assume that the solutions in P(i — 1) are sorted in non-decreasing order of
their weights. We denote by P(i — 1) + ¢ the set of solutions that is obtained by adding the
i-th object to each solution from P(i — 1). Due to the following observation, P (i) must be a
subset of P(i)) = P(i —1)U(P(i — 1) +1i).

Observation 3.2. Let x € P(i). If © does not contain the i-th object, then x € P(i — 1).
If x contains the i-th object, then the solution obtained from x by removing the i-th object
belongs to P(i — 1).

Since this observation implies that P(i) is a subset of P(i)’, the set P(i) can be computed
by computing P(i)" and then removing all solutions that are dominated by other solutions
from P(i)’. The set P(i)" is obtained by merging the two sets P(i — 1) and P(i — 1) + .
Both of these sets are sorted in non-decreasing order of weights due to our assumption on
P(i —1). Hence, we can compute P(i)’ in linear time with respect to the size of P(i — 1)
such that it is also sorted in non-decreasing order of weights. Given this order of solutions
in P(i)’, the set P(i) of Pareto optimal solutions can be found in linear time. Summarizing,
the Nemhauser/Ullmann algorithm can be formulated as follows:

Algorithm 1 The Nemhauser/Ullmann algorithm
Set P(0) = {0"}.
fori=1,...,ndo
Merge P(i — 1) and P(i — 1) + ¢ into P(i)’. ..
...such that P(i)" is sorted in non-decreasing order of weights.
P(i) ={z € P(i) | Az’ € P(i)": 2/ dominates x}.
return z € P(n) with p-x =max{p-y |y € P(n) Aw -y < t}.

For the purpose of illustration and a better understanding, let us take a different view on the
algorithm. For i € [n], let f;: R — R be a mapping from weights to profits such that f;(z)
is the maximum profit over all solutions in P(¢) with weight at most x. Observe that f; is
a non-decreasing step function changing its value only at those weights that correspond to

3.2. Probabilistic Input Model 21

weight

Figure 3.1: The dots correspond to solutions that contain only a subset of the first ¢ elements.
Black dots correspond to solutions from P(%).

profit profit

fi

w; weight weight
Figure 3.2: The function f; is the upper envelope of the functions f;_; and fltil.

solutions from P(7). In particular, the number of steps of f; equals the number of solutions
in P(i). Figure 3.1 shows such a step function.

Now we describe how one can construct f; if f;_1 is known. Therefore, observe that the set

P(i— 1)+ corresponds to a function ftil which is a copy of f;_; that is shifted by (w;, p;).

7

The function f; is the upper envelope of the functions f;_1 and f;fl (see Figure .

We have already argued that the time it takes to compute P (i) from P(i — 1) is linear in the
size of P(i — 1). This yields the following lemma.

Lemma 3.3. For i € {0,...,n — 1}, we set q(i) = |P(i)|. The running time of the
Nemhauser/Ullmann algorithm is bounded from above by

If the number ¢(i) of Pareto optimal solutions does not decrease with 4, i.e., ¢(0) < ¢(1) <
... < q(n), then the running time of the Nemhauser/Ullmann algorithm simplifies to O(n -
q(n)). That is, the running time depends linearly on the number of Pareto optimal solutions.

3.2 Probabilistic Input Model

Our goal is to analyze the expected number of Pareto optimal solutions in a smoothed
input model in which an adversary specifies an arbitrary instance of the knapsack problem

22 3. Smoothed Analysis of the Knapsack Problem

which is subsequently perturbed at random. Since we are only interested in the number
of Pareto optimal solutions, the capacity is not important and we can assume that the
adversary specifies only the profits and weights of the objects. In our analysis it is not
necessary that both the profits and the weights are perturbed, and hence we strengthen the
adversary by assuming that only the weights are perturbed. As the running time of the
Nemhauser/Ullmann algorithm depends linearly on the number of Pareto optimal solutions,
a bound on the expected number of Pareto optimal solutions directly implies a bound on
the expected running time of the algorithm and hence on its smoothed complexity.

In the introduction, we have argued that a linear program can be perturbed by adding a
Gaussian random variable to each coefficient. In principle, we can use the same perturba-
tion model also for the knapsack problem, that is, each weight is perturbed by adding an
independent Gaussian random variable. In this perturbation model, weights can, however,
become negative. In order to avoid this problem, we consider a more general perturbation
model. First of all, note that we can describe the two-step input model for linear programs
as a one-step model. Instead of saying that an adversary specifies a coefficient which is
perturbed by adding a Gaussian random variable with standard deviation o, we say that
the adversary is allowed to choose a probability distribution for each coefficient according
to which it is chosen. In the input model for linear programs, the adversary is restricted
to probability distributions that correspond to Gaussian random variables with standard
deviation o, that is, the adversary can only determine the mean of the random variables.

In our perturbation model for the knapsack problem, the adversary is not restricted to Gaus-
sian distributions. Of course, we cannot allow the adversary to specify arbitrary distributions
for the weights because this would allow deterministic inputs as a special case. We restrict
the adversary to distributions that can be represented by densities that are bounded by
some value ¢. To make this formal, we assume that for each weight w; a probability density
fi: R — [0, ¢] is given, and that each weight w; is chosen independently according to den-
sity fi;. The adversary could, for instance, choose for each coefficient an arbitrary interval
of length 1/¢ from which it is chosen uniformly at random. The larger the parameter ¢
is chosen, the more concentrated the random variables can be. Hence, analogously to o~ !
for Gaussian distributions, the larger the parameter ¢ is chosen, the closer is the smoothed
analysis to a worst-case analysis. For Gaussian perturbations, we have ¢ = (ov/2m)7L.

3.3 The Expected Number of Pareto Optimal Solutions

In this section, we show that the expected number of Pareto optimal solutions for the knap-
sack problem is polynomially bounded in n and ¢. As argued above, this directly implies that
the expected running time of the Nemhauser/Ullmann algorithm is polynomially bounded
in n and ¢ as well. For the sake of simplicity, we assume that all weights lie in the interval
[0,1], that is, for all = ¢ [0,1] and for all i € [n], we have f;(z) = 0. Beier et al. [BRV07]
show that this restriction is not necessary, but we present only a simplified version of their
result here.

Theorem 3.4 ([BRVQT]). For an instance of the knapsack problem with n objects whose
profits are specified arbitrarily and whose weights are chosen independently according to den-
sities fi,..., fn with f;: [0,1] — [0, @], the expected number of Pareto optimal solutions is
upper bounded by ¢n? + 1.

3.8. The Ezxpected Number of Pareto Optimal Solutions 23

Figure 3.3: Definitions of the winner xz*, the loser #, and the random variable A(%).

Proof. We denote the set of Pareto optimal solutions by P and its size by ¢, i.e., ¢ = |P|.
Every solution has a weight in the interval [0, n] because the weights of the objects lie in the
interval [0, 1]. Since in the probabilistic input model no two solutions have exactly the same
weight, we can partition the interval [0,n] into small intervals such that each of the small
intervals contains at most one Pareto optimal solution. Formally, we can write the expected
number of Pareto optimal solutions as

k—1

E[]—l—i—khm ZPI‘[HQ:GP w - xE(TZ n(zk—kl)H, (3.2)

where the additional 1 corresponds to the solution 0", which always belongs to P. In order
to estimate the probability in (3.2), we consider the case that an arbitrary ¢ € [0,n] and an
arbitrary € > 0 are given, and we bound the probability that there exists a Pareto optimal
solution with weight in the interval (¢,¢+¢]. For this, we define a random variable A(t) such
that

At)<e <= Tz cP:w- -z € (t,t+¢] (3.3)

In order to define A(t), we define the winner x* to be the most valuable solution satisfying
w-x <t ie.,

¥ =argmax{p -z |z € {0,1}" Aw-z < t}.
For ¢t > 0, such a solution x* must always exist. We say that a solution x is a loser if it has

a higher profit than x* but does not satisfy the constraint w -z < t. We denote by & the
loser with the smallest weight (see Figure [3.3)), i.e.,

g =argmin{w -z |z €{0,1}" Ap-x>p- 2"}

If there does not exist a solution = with p-x > p-z*, then we set £ =1. Based on z, we
define the random variable A(t) as

Ay = [ort if & £,
1 if & =1 .

Assume that there exists a Pareto optimal solution with weight in (¢,¢ + €], and let y denote
the Pareto optimal solution with the smallest weight in (¢, 4+ ¢]. Then y = & and hence
A(t) =w-y—1t € (0,e]. Conversely, if A(t) < e, then & must be a Pareto optimal solution
whose weight lies in the interval (¢,¢ + ¢]. This yields Equivalence , and hence we can
write the expected number of Pareto optimal solutions as

E [q] —1+hmZPr[(>_Z} (3.4)

k—o0

24 3. Smoothed Analysis of the Knapsack Problem

It only remains to bound the probability that A(t) does not exceed €. In order to analyze
this probability, we define a set of auxiliary random variables such that A(t) is guaranteed
to always take a value also taken by one of the auxiliary random variables. Then we analyze
the auxiliary random variables and use the union bound to conclude the desired bound for
A(t). Let i € [n] be fixed arbitrarily. For j € {0,1}, we define

ST ={z € {0,1}" | z; = j},
and we define ** to be

o' = argmax{p -z |z € S"T Aw -z < t}.

That is, ** is the winner among the solutions that do not contain the i-th element. We
restrict our attention to losers that contain the i-th element and define

&' =argmin{w -z |z € S Ap-x>p- ™}

If there does not exist a solution z € S*=! with p-z > p- 2™, then 4’ is undefined, i.e.,
#' =1. Based on #¢, we define the random variable A’(t) by

; w-E -t if 3 #£L,
A(t):{J_ if 27 =1

Summarizing, A%(t) is defined similarly to A(t), but only solutions that do not contain the
i-th element are eligible as winners and only solutions containing the i-th element are eligible
as losers.

Lemma 3.5. For every choice of profits and weights, either A(t) =L or there ezists an index
i € [n] such that A(t) = A*(t).

Proof. Assume that A(t) #L. Then there exists a winner z* and a loser Z. Since z* # %,
there must exist an index i € [n] with x} # #;. Since all weights are positive and w-z* < w-Z,
there must even exist an index ¢ € [n] with 27 = 0 and #; = 1. We claim that for this index
i, A(t) = A%(t). In order to see this, we first observe that #* = x*%. This follows because z*
is the solution with the highest profit among all solutions with weight at most ¢, and since
it belongs to S*=Y it is in particular the solution with the highest profit among all solutions
that do not contain the i-th element and have weight at most ¢. Since x* = x**, by similar
arguments it follows that £ = 2. This directly implies that A(t) = A% (t). O

Lemma 3.6. For every i € [n] and every e > 0,

Pr [A'(t) € (0,€]] < ¢=.

Proof. In order to prove the lemma, it suffices to exploit the randomness of the weight
w;. Therefore, assume that all other weights are fixed arbitrarily. Then the weights of all
solutions from S%=C and hence also the solution z** are fixed. If the solution x*? is fixed,
then also the set of losers {x € §*=! | p-z > p- 2%} is fixed. Since the weight w; affects
all solutions from S%=! in the same manner, the solution ¢ does not depend on w;. This
implies that, given the fixed values of the weights w; with j # ¢, we can rewrite the event
Ai(t) € (0,¢] as w- 2" — t € (0,¢] for a fixed solution #°. For a constant x € R depending on
the fixed values of the weights w; with j # i, we can rewrite this event as w; € (k,k + €.
By Observation the probability of this event is upper bounded by ¢e. O

3.4. Fxtensions 25

Combining Lemmas [3.5] and [3.6] yields
Pr{A(t) <] < Pr[3i € [n]: A'(t) € (0,¢]] < 3 Pr|Al(1) € (0,¢]] < gme.
i=1
Combining this with (3.4) yields
=l ni
Elg =1+ klggogpr [A (k>
k—1 2
<14 lim 3O
5k

k—o0 4
1=

=1+ ¢n’

IN

i

O]

Finally, we obtain the following result on the running time of the Nemhauser/Ullmann
algorithm.

Corollary 3.7. For an instance of the knapsack problem with n objects whose profits are spec-
ified arbitrarily and whose weights are chosen independently according to densities f1,..., fn
with f;: [0,1] — [0, @], the expected running time of the Nemhauser/Ullmann algorithm is
upper bounded by O(pn?).

3.4 Extensions

The result proven in [BRV07] is much more general than the one stated in the previous
section. First, it is not necessary that every profit lies in the interval [0,1]. In fact, any
density function f: R — [0, ¢] is allowed for which

[sy

is bounded by some constant. Intuitively this means that the expected absolute value of a
random variable drawn according to f should be constant. This way, also Gaussian perturba-
tions and other densities that are not defined on a bounded interval are allowed. The upper
bound of O(n?¢) on the expected number of Pareto-optimal solutions remains valid, and
hence also the bound of O(n3¢) on the smoothed running time of the Nemhauser/Ullmann
algorithm.

Second, the proof of Theorem [3.4] does not essentially use the fact that we consider the
knapsack problem. In fact, the result by Beier et al. [BRV07] does not only apply to the
knapsack problem, but to any problem with a linear objective function. In the general model,
one only assumes that there is an arbitrary set of solutions S C {0,1}", an arbitrary weight
function w : & — R that assigns a weight to every solution, and a linear objective function
p1T1 + -+ + ppy. If the coeflicients p1,. .., p, are drawn according to probability densities
that are bounded by ¢, the bound of O(n?¢) on the expected number of Pareto-optimal
solutions still applies, regardless of the choices for S, w, and the densities.

For a given graph with n edges eq,...,e,, one can, for example, identify every vector x €
{0,1}" with the subset of edges E(x) = {e; | x; = 1}. Then z is the so-called incidence

26 3. Smoothed Analysis of the Knapsack Problem

vector of the edge set E(x). If, for example, there is a source node s and a target node ¢
given, one could choose the set S of feasible solutions as the set of all incidence vectors of
paths from s to ¢ in the given graph. This way, the result implies that the smoothed number
of Pareto-optimal paths in the bicriteria shortest-path problem is O(n%¢), where n denotes
the number of edges. In this problem, every edge of the graph is assigned a weight and a
cost, and one wants to find Pareto-optimal paths from s to ¢ with respect to total weight
and total cost. Similarly, one could choose § as the set of incidence vectors of all spanning
trees of a given graph. Then the result implies that there are only O(n?¢) Pareto-optimal
spanning trees in expectation in the bicriteria spanning tree problem.

These results can even be generalized to d-criteria problems [RT09, MO10], in which there
are d linear objective functions with perturbed coefficients, for some constant d. For these
problems the bound becomes O(n??¢@(@+1)/2),

Bibliography

[Aro98]

[AZ99]

[BRVO7]

[CKT99]

[Dan63]

[ERV07]

[GS55]

[IM97]

[Kar72]

[Kar84]

[Ker89]

[KhaT79]

[Lue75]

Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems. Journal of the ACM, 45(5):753-782, 1998.

Nina Amenta and Giinter M. Ziegler. Deformed Products and Mazimal Shadows
of Polytopes, volume 223 of Contemporary Mathematics, pages 57-90. American
Mathematics Society, 1999.

Rene Beier, Heiko Réglin, and Berthold Vécking. The smoothed number of Pareto
optimal solutions in bicriteria integer optimization. In 12th Int. Conf. on Integer
Programming and Combinatorial Optimization (IPCO), 2007. to appear.

Barun Chandra, Howard J. Karloff, and Craig A. Tovey. New results on the old
k-Opt algorithm for the traveling salesman problem. SIAM Journal on Computing,
28(6):1998-2029, 1999.

G. B. Dantzig. Linear Programming and FExtensions. Princeton University Press,
Princeton, NJ, 1963.

Matthias Englert, Heiko Roglin, and Berthold Vocking. Worst case and proba-
bilistic analysis of the 2-Opt algorithm for the TSP. In 18th ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 1295-1304, 2007.

S. Gass and T.L. Saaty. The computational algorithm for the parametric objective
function. Nawval Research Logistics Quarterly, 2:39, 1955.

David S. Johnson and Lyle A. McGeoch. The traveling salesman problem: A case
study in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local
Search in Combinatorial Optimization. John Wiley and Sons, 1997.

Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complezity of Computer Computations, pages 85—
104. Plenum Press, New York, 1972.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373-396, 1984.

Walter Kern. A probabilistic analysis of the switching algorithm for the Euclidean
TSP. Mathematical Programming, 44(2):213-219, 1989.

L. G. Khachian. A polynomial algorithm in linear programming. Dokl. Akad. Nauk
SSSR, 244:1093-1096, 1979.

George S. Lueker. Unpublished manuscript, 1975. Princeton University.

27

28 BIBLIOGRAPHY

[Mit99] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions:
A simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM Journal on Computing, 28(4):1298-1309, 1999.

[MO10] Ankur Moitra and Ryan O’Donnell. Pareto optimal solutions for smoothed ana-
lysts. arXiv:1011.2249v1 [cs.DS], 2010.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. 1995.

[MUO5] Michael Mitzenmacher and Eli Upfal. Probability and Computing. 2005.

[NU69] George L. Nemhauser and Zev Ullmann. Discrete dynamic programming and cap-
ital allocation. Management Science, 15:494-505, 1969.

[Pap77] Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-
complete. Theoretical Computer Science, 4(3):237-244, 1977.

[PS98] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization.
Dover Publications, Inc., 1998.

[Rei91] Gerhard Reinelt. TSPLIB — A traveling salesman problem library. ORSA Journal
on Computing, 3(4):376-384, 1991.

[RSI77] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. An anal-
ysis of several heuristics for the traveling salesman problem. SIAM Journal on
Computing, 6(3):563-581, 1977.

[RT09] Heiko Roglin and Shang-Hua Teng. Smoothed analysis of multiobjective optimiza-
tion. In 50th Ann. IEEE Symp. on Foundations of Computer Science (FOCS),
pages 681-690. IEEE, 2009.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385-463, 2004.

[Ver06] Roman Vershynin. Beyond hirsch conjecture: walks on random polytopes and
smoothed complexity of the simplex method. In 47th Ann. IEEE Symp. on Foun-
dations of Computer Science (FOCS), pages 133-142, 2006.

[vLS81] Jan van Leeuwen and Anneke A. Schoon. Untangling a traveling salesman tour in

the plane. In 7th Int. Workshop on Graph-Theoretic Concepts in Computer Science
(WG), pages 87-98, 1981.

	Introduction to Smoothed Analysis
	Smoothed Analysis of the Simplex Algorithm
	Mathematical Background

	Smoothed Analysis of the 2-Opt Algorithm for the TSP
	Preliminaries
	Overview of Results
	Smoothed Analysis of 2-Opt

	Smoothed Analysis of the Knapsack Problem
	The Nemhauser/Ullmann Algorithm
	Probabilistic Input Model
	The Expected Number of Pareto Optimal Solutions
	Extensions

