Name:

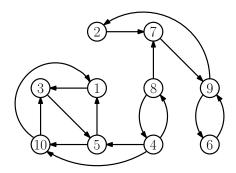
 $\begin{tabular}{ll} Algorithmen und \\ Berechnungskomplexität I \\ Wintersemester 2010/11 \end{tabular}$

Note:

Probeklausur

Matrikelnummer:		
Studiengang:		
Übungsgruppe:	 ○ Montag, 13-15 ○ Donnerstag, 11-13 ○ Freitag, 11-13 	 ◯ Mittwoch, 13-15 ◯ Donnerstag, 13-15 ◯ Freitag, 13-15
Bitte beachten Sie folge	ende Hinweise:	
ein und kreuzen Sie		ummer und Ihren Studiengang ben Sie Ihren Namen und Ihre sur.
2. Die Dauer der Klausu	r beträgt 90 Minuten.	
	fsmittel zugelassen. Täuschun obeklausur mit 0 Punkten.	ngsversuche jeglicher Art führen
4. Verwenden Sie keine benutzen Sie bitte die	-	esehene Platz nicht ausreichen,
5. Es können maximal ageht als Zusatzpunkte	••	e Hälfte der erreichten Punkte
6. In der gesamten Klausur werden die Laufzeiten im uniformen Kostenmaß betrachtet.		
Von den Korrektoren ausz	ufüllen:	

Aufgabe 1


2+2+3+3+4=14 Punkte

(a) Prof. G. Witzt hat mit Hilfe neuester Erkenntnisse aus der Theoretischen Informatik ein vergleichsbasiertes Sortierverfahren mit Laufzeit $O(n \log \log n)$ entworfen. Glauben Sie ihm? Begründen Sie Ihre Antwort.

(b) Geben Sie eine möglichst einfache Funktion f an, für die $\sum_{i=1}^n \frac{1}{i} = \Theta(f(n))$ gilt.

- (c) Wir betrachten einen binären Suchbaum mit den Schlüsseln $1, \ldots, 1000$ und suchen nach dem Schlüssel 220. Die Schlüssel k_i , die wir uns während der Suche anschauen, bilden eine Sequenz k_1, \ldots, k_m . Welche der folgenden Sequenzen können bei der Suche **nicht** entstehen?
 - (1) 7, 13, 563, 561, 27, 144, 496, 220
 - (2) 28, 42, 561, 127, 108, 496, 144, 220
 - (3) 563, 28, 127, 561, 108, 496, 144, 220

(d) Bestimmen Sie die starken Zusammenhangskomponenten des unten dargestellten gerichteten Graphen.

(e) Geben Sie die worst-case Laufzeit des Algorithmus von Kruskal in Θ -Notation an. Wie ändert sich diese Laufzeit, wenn man eine Union-Find-Datenstruktur verwendet, die für jede Folge von m Union-Befehlen und f Find-Befehlen nur Zeit $O(m \log \log m + f)$ benötigt? Begründen Sie Ihre Antwort.

Name: Matrikelnummer:

Aufgabe 2 6+4=10 Punkte

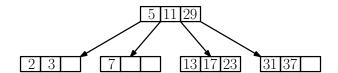
(a) Gegeben sei ein Feld A mit den Einträgen $A[1], \ldots, A[n]$ und eine Funktion Swap, die als Parameter einen Index i zwischen 1 und n-1 erhält und wie folgt implementiert ist.

```
 \begin{aligned} &\operatorname{Swap}(i) \\ &\{ & \text{if } A[i] > A[i+1] \text{ then Vertausche } A[i] \text{ und } A[i+1]. \\ &\} \end{aligned}
```

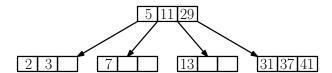
Zeigen Sie, dass jedes Sortierverfahren, welches Feld A nur mit Hilfe der Swap-Funktion verändert, genau $\chi(A)$ Vertauschungen durchführt, wobei

```
\chi(A) := |\{(i,j) : 1 \le i < j \le n \text{ und } A[i] > A[j]\}|
```

die Anzahl der Inversionen in A ist. Was lässt sich über die worst-case Laufzeit solcher Sortierverfahren schlussfolgern?

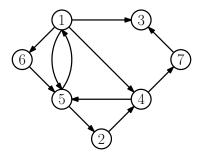

(b) Kann man ein Feld A mit n Einträgen aus $\{1,\dots,n\}$ in Zeit O(n) sortieren? Begründen Sie Ihre Antwort.

Aufgabe 3 4+4+4=12 Punkte


(a) Wie viele Knoten besitzt ein B-Baum der Ordnung $t \ge 2$ und der Höhe $h \ge 1$ mindestens? Es ist nicht notwendig, in den Formeln auftretende Summen zu berechnen.

 $Zur\ Erinnerung$: Jeder Knoten eines B-Baumes der Ordnung t, außer der Wurzel, besitzt mindestens t-1 und höchstens 2t-1 Schlüssel. Die Wurzel besitzt mindestens 1 und höchstens 2t-1 Schlüssel, sofern der Baum nichtleer ist.

(b) Fügen Sie den Schlüssel 19 in den unten abgebildeten B-Baum der Ordnung 2 ein.



(c) Löschen Sie den Schlüssel 11 aus dem unten abgebildeten B-Baum der Ordnung 2.

Aufgabe 4 6+6=12 Punkte

(a) Führen Sie eine Tiefensuche auf dem unten abgebildeten Graphen durch. Beginnen Sie mit Knoten 1 und bevorzugen Sie bei der Auswahl des als nächstes zu betrachtenden Nachbarn eines Knotens stets den mit kleinerer Nummer. Ordnen Sie jede Kante ihrer Klasse (T-, F-, C- oder B-Kante) zu und bestimmen Sie die Reihenfolge, in der die Knoten besucht werden.

(b) Geben Sie einen Graphen G=(V,E), eine Kantengewichtung $w\colon V\to \mathbb{R}$ und einen Knoten $s\in V$ an, sodass der Algorithmus von Dijkstra, ausgehend von Knoten s, nicht für alle Knoten $v\in V$ die Länge eines kürzesten Weges von s nach v bestimmt.

Hinweis: Wenn alle Kantengewichte positiv sind, dann arbeitet der Algorithmus von Dijkstra korrekt.