

Musterlösung Übungsblatt 11

Aufgabe 11.5

- (a) Für ein besseres Verständnis interpretieren wir die Negation des Pumping-Lemmas wieder als Spiel zwischen Vera und Peter auf der Sprache L (siehe Skript). Wenn Peter eine Gewinnstrategie besitzt, dann folgt mit Hilfe des Pumping-Lemmas, dass L nicht regulär ist. Um zu zeigen, dass Peter den Sieg nicht erzwingen kann, geben wir eine Gewinnstrategie für Vera an.
 - 1. Runde: Vera wählt n = 1.
 - **2. Runde:** Peter wählt ein Wort $z \in L$ mit $|z| \ge n = 1$, also $z \in L \setminus \{\varepsilon\}$.
 - **3. Runde:** Sei $z=z_1\ldots z_m$. Vera wählt eine Zerlegung z=uvw mit $u=\varepsilon,\,v=z_1$ und $w=z_2\ldots z_m$.
 - **4. Runde:** Peter wählt eine beliebige ganze Zahl $i \geq 0$.

Das durch Vera und Peter konstruierte Wort ist $z' := uv^i w = z_1^i z_2 \dots z_m \in L$.

Wir zeigen, dass die Strategie von Vera eine Gewinnstrategie ist, d.h. es gilt $z' \in L$, egal wie Peter spielt. Das Wort z hat die Gestalt $z=1^l$ für $l \ge 1$, $z=0^k1^l$ für $k \ge 1$ und $l \ge 0$ oder $z=1^k0^l1^l$ für $k,l \ge 1$. Das Wort z' hat daher die Form $z'=1^{l+i-1} \in L_1$, $z'=0^{k+i-1}1^l \in L_1$ oder $z=1^{k+i-1}0^l1^l \in L_1 \cup L_2$.

(b) Wir führen die Annahme, dass L regulär ist, zu einem Widerspruch. Ist L regulär, dann gibt es einen DFA $M=(Q,\Sigma,\delta,q_0,F)$, der L entscheidet. Sei n=|Q| die Anzahl der Zustände von M. Wir betrachten die n+1 Worte $z_l=10^{2n}1^l,\ l=1,\ldots,n+1$. Dann gibt es Indizes $l_1< l_2$ mit $\delta^*(q_0,z_{l_1})=\delta^*(q_0,z_{l_2})$. Demzufolge gilt auch $\delta^*(q_0,z_{l_1}1^{2n-l_2})=\delta^*(q_0,z_{l_2}1^{2n-l_2})$, aber $z_{l_1}1^{2n-l_2}=10^{2n}1^{2n+l_1-l_2}\notin L$, wohingegen $z_{l_2}1^{2n-l_2}=10^{2n}1^{2n+l_2-l_2}=10^{2n}1^{2n}\in L$. Der DFA M würde also entweder beide Worte akzeptieren oder beide Worte verwerfen, obwohl genau eines von beiden zur Sprache L gehört. Das liefert den gewünschten Widerspruch.