Algorithmen und Berechnungskomplexität I

Heiko Röglin Institut für Informatik I

Wintersemester 2010/11

Organisatorisches

Vorlesung

- Montags 11:15 12:45 Uhr (AVZ III / HS 1)
- Mittwochs 11:15 12:45 Uhr (AVZ III / HS 1)

Dozent

- Heiko Röglin
- Professor f
 ür theoretische Informatik
- Institut f
 ür Informatik, Abteilung I
- Arbeitsgebiet: Entwurf und Analyse von Algorithmen

Übungen

Übungen

• wöchentliche Übungen

```
      Mo
      13 (c.t.) - 15
      AVZ III / A7a

      Mi
      13 (c.t.) - 15
      AVZ III / A7a

      Do
      11 (c.t.) - 13
      AVZ III / A7a

      Do
      13 (c.t.) - 15
      AVZ III / A301

      Fr
      11 (c.t.) - 13
      AVZ III / A7a

      Fr
      13 (c.t.) - 15
      AVZ III / A301
```

 Anmeldung: Geben Sie den Anmeldezettel spätestens Mittwoch (13.10.) in der Vorlesung ab.

Übungsblätter und Übungsschein

Übungsblätter und Übungsschein

- jeden Mittwoch gibt es ein Übungsblatt
 - Abgabe: am Mittwoch darauf in der Vorlesung
 - Besprechung: in der Woche nach der Abgabe
 - Gruppenarbeit: Abgabe in Gruppen mit max. 3 Studierenden
- Voraussetzung für den Übungsschein:
 - insgesamt 50% der möglichen Punkte auf den Übungszetteln
 - aktive Teilnahme an den Übungen (das heißt insbesondere Anwesenheit in den Übungen)
- Probeklausur am 15. Dezember 2010
 - zur besseren Selbsteinschätzung
 - Möglichkeit, Zusatzpunkte für die Übungen zu erhalten

Klausur

Klausur

- Übungsschein ist Zulassungsvoraussetzung
- Datum: Wahrscheinlich in der Woche vom 7. bis zum 11. Februar (der genaue Termin ist abhängig von der Verfügbarkeit von Räumen und wird bald mitgeteilt)
- Ähnlichkeit mit Übungsaufgaben und Probeklausur
- zweite Klausur: Ende März
- vor der zweiten Klausur ist ein Ferientutorium geplant

Fragen

Bei Fragen

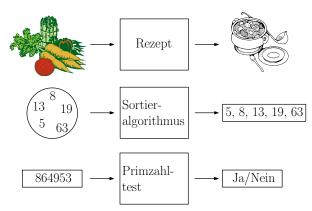
- Sprechstunde: Dienstags 10-11 Uhr oder nach der Vorlesung
- E-Mail: roeglin@uni-bonn.de
- Büro: Brühler Straße 7, Raum 3.052
 (Bei verschlossener Tür 0228 / 73 4326 anrufen.)
- Weitere Informationen auf der Webseite:

```
http:
```

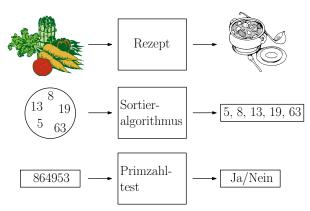
//www.roeglin.org/teaching/WS2010/AuBI.html

• Feedback zur Veranstaltung ist erwünscht.

Literatur


Jede Vorlesung basiert auf einem Kapitel in einem Buch/Skript, anhand dessen sie nachgearbeitet werden kann.

Literatur


- Introduction to Algorithms
 Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein ISBN-13: 978-0262533058, Dritte Auflage, MIT Press
- Skript zur Vorlesung "Berechenbarkeit und Komplexität"
 Berthold Vöcking, RWTH Aachen, Wintersemester 2009/10
- Skript zur Vorlesung "DAP II"
 Ingo Wegener, Universität Dortmund, Sommersemester 2007
- Material zum Kurs "Introduction to Algorithms" am MIT

```
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/
```

Ein **Algorithmus** ist ein formal definiertes Verfahren, das eine Eingabe in eine Ausgabe transformiert (ein "Kochrezept").

Ein **Algorithmus** ist ein formal definiertes Verfahren, das eine Eingabe in eine Ausgabe transformiert (ein "Kochrezept").

Formal definiert ≅ genau genug beschrieben, um direkt in Java/C++ implementiert werden zu können

Algorithmen werden überall gebraucht:

Navigationsgerät:

Was ist der kürzeste Weg von A nach B?

Paketdienst:

In welcher Reihenfolge sollen Kunden beliefert werden?

(Online) Banking:

Wie werden Informationen ver- und entschlüsselt?

Suchmaschinen:

Wie findet man Informationen in einer großen Datenbank?

Algorithmen werden überall gebraucht:

Was ist der kürzeste Weg von A nach B?

Paketdienst:

In welcher Reihenfolge sollen Kunden beliefert werden?

(Online) Banking:

Wie werden Informationen ver- und entschlüsselt?

Suchmaschinen:

Wie findet man Informationen in einer großen Datenbank?

Trotz schneller Rechner: Effizienz ist wichtig!

Wo liegen die Grenzen?

Halteproblem:

Terminiert Programm nach endlich vielen Schritten?

Wo liegen die Grenzen?

Halteproblem:

Terminiert Programm nach endlich vielen Schritten? Nicht entscheidbar!

Wo liegen die Grenzen?

Halteproblem:

Terminiert Programm nach endlich vielen Schritten? Nicht entscheidbar!

Problem des Handlungsreisenden (TSP):

Finde kürzeste Tour durch alle Städte.

Wo liegen die Grenzen?

Halteproblem:

Terminiert Programm nach endlich vielen Schritten? Nicht entscheidbar!

Problem des Handlungsreisenden (TSP):

Finde kürzeste Tour durch alle Städte.

Wo liegen die Grenzen?

Halteproblem:

Terminiert Programm nach endlich vielen Schritten? Nicht entscheidbar!

Problem des Handlungsreisenden (TSP):

Finde kürzeste Tour durch alle Städte.
Vermutlich nicht effizient lösbar!

Ausblick

Ausblick

- Wintersemester 2010/11:
 Algorithmen und Berechnungskomplexität I (V4+Ü2)
 - grundlegende Datenstrukturen
 - grundlegende Graphalgorithmen
 - Sortieralgorithmen
 - allgemeine Methoden zum Entwurf von Algorithmen
- Sommersemester 2011:
 - Algorithmen und Berechnungskomplexität II (V4+Ü2)
 - Welche Problem sind nicht berechenbar?
 - Welche Probleme sind nicht effizient berechenbar?
 - Mächtigkeit von Automaten und Sprachen

Lernziele

Lernziele

- Kenntnis grundlegender Datenstrukturen, Methoden und Konzepte
- Fähigkeit, ein gegebenes Problem zu analysieren:
 - Einordnung der Schwierigkeit des Problems
 - Auswahl geeigneter Datenstrukturen und Methoden zur Lösung des Problems
- Entwurf eines Algorithmus zur Lösung eines gegebenen Problems
- Analyse des entwickelten Algorithmus