

Algorithmen und Berechnungskomplexität I Wintersemester 2010/11

Abgabe: 26.01.2011 in der Vorlesung

Übungsblatt 11

Aufgabe 11.1 4+2 Punkte

- (a) Bestimmen Sie für die Sprache $L = \{(ab)^i : i \geq 0\} \cup \{(aab)^i : i \geq 0\}$ alle Äquivalenzklassen der Nerode-Relation R_L über dem Alphabet $\{a,b\}$.
- (b) Beweisen Sie exemplarisch für eine der von Ihnen angegebenen Mengen, die mindestens zwei Elemente enthält, dass es sich um eine Äquivalenzklasse handelt.

Aufgabe 11.2 2+2+2 Punkte

Welche der folgenden Sprachen über dem Alphabet $\Sigma = \{a, b\}$ sind regulär? Beweisen Sie Ihre Aussage.

- (a) $L_1 = \{ w \in \Sigma^* : w = xx, x \in \Sigma^* \}$
- (b) $L_2 = \{ w \in \Sigma^* : \text{ Das vorletzte Zeichen von } w \text{ ist } a. \}$
- (c) $L_3 = \{w \in \Sigma^* : |w|_a = |w|_b\}$. Dabei bezeichne $|w|_y$ für ein Wort $w \in \Sigma^*$ und ein Zeichen $y \in \Sigma$ die Anzahl der Vorkommen von y in w.

Aufgabe 11.3 2+2+2 Punkte

Wir betrachten den NFA $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_0\})$, dessen Zustandsüberführungsrelation δ durch folgende Tabelle gegeben ist:

- (a) Konstruieren Sie aus dem NFA M mit Hilfe der Potenzmengenkonstruktion einen äquivalenten DFA M'.
- (b) Minimieren Sie den Potenzmengenautomaten M'.
- (c) Geben Sie die Sprache an, die der NFA M entscheidet.

Aufgabe 11.4 3+3 Punkte

- (a) Sei $k \in \mathbb{N}$ eine (feste) Zahl und $L \subseteq \{0,1\}^k$ eine Sprache über dem Alphabet $\{0,1\}$. Zeigen Sie, dass es einen DFA M gibt, der L entscheidet und höchstens einen akzeptierenden Zustand besitzt.
- (b) Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein DFA mit n = |Q| Zuständen und sei $q \in Q$ beliebig. Zeigen Sie, dass q genau dann überflüssig ist, wenn es kein Wort $w \in \Sigma^*$ mit $|w| \le n 1$ gibt, für das $\delta^*(q_0, w) = q$ gilt.

Aufgabe 11.5 3+3 Zusatzpunkte

Gegeben seien zwei Sprachen $L_1 = \{0^k 1^l : k, l \ge 0\}$ und $L_2 = \{1^k 0^l 1^l : k, l \ge 1\}$ über dem Alphabet $\{0, 1\}$ sowie deren Vereinigung $L = L_1 \cup L_2$.

- (a) Zeigen Sie, dass man mit Hilfe des Pumping-Lemmas die Irregularität der Sprache L nicht beweisen kann.
- (b) Zeigen Sie, dass die Sprache L nicht regulär ist.