Abgabe: 20.10.2010 in der Vorlesung

Übungsblatt 1

Aufgabe 1.1

Beweisen Sie folgende Aussagen.

- (a) $\forall k > 0 : n^k = o(2^n)$
- (b) Es seien $p_1(n) = a_1 \cdot n^{d_1}$ und $p_2(n) = a_2 \cdot n^{d_2}$ Polynome vom Grad d_1 bzw. d_2 , wobei die Koeffizienten a_1 und a_2 positiv sind. Dann gilt:

(I)
$$p_1 = \Theta(p_2) \iff d_1 = d_2$$

(II)
$$p_1 = o(p_2) \iff d_1 < d_2$$

(III)
$$p_1 = \omega(p_2) \iff d_1 > d_2$$

(c)
$$\forall k > 0 \ \forall \varepsilon > 0 \colon (\log_2(n))^k = o(n^{\varepsilon})$$

Hinweis: Für zwei Funktionen $f: \mathbb{N} \longrightarrow \mathbb{R}^+$ und $g: \mathbb{N} \longrightarrow \mathbb{R}^+$ gilt $f = o(g) \Longleftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Aufgabe 1.2 5+1 Punkte

Füllen Sie die folgende Tabelle aus. Verwenden sie eines der Symbole aus $\{O, o, \omega, \Omega, \Theta, -\}$, um eine Funktion f einer Zeile mit einer Funktion g einer Spalte in Beziehung zu setzen. Versuchen Sie, so genau wie möglich zu sein. Beispiel: Für $f(n) = n^3$ und $g(n) = n^4$ gilt f = o(g). Der entsprechende Eintrag sollte also "o" und nicht nur "O" sein. Stehen die Funktionen in keiner Beziehung, tragen Sie "—" ein.

In der Tabelle stehe s(n) abkürzend für die Funktion $s(n) = \begin{cases} 1 & : n \text{ ungerade}, \\ n & : n \text{ gerade}. \end{cases}$

	$\log_2(n)$	s(n)	\sqrt{n}	5	2^n	1/n	n	e^n	n^2
$\log_2(n)$									
s(n)									
\sqrt{n}									
5									
2^n									
1/n									
n									
e^n									
n^2									

Hinweis: Es genügt, einen der beiden Teile unterhalb oder oberhalb der Diagonale auszufüllen und zu beschreiben, wie sich die restlichen Einträge ergeben.

Aufgabe 1.3

(a) Schreiben Sie ein Registermaschinenprogramm, das aus der Eingabe $n \in \mathbb{N}_0$ den Wert

$$g(n) = \sum_{i=1}^{n} i^2$$

berechnet. Die Eingabe n befinde sich in Register 1. Das Ergebnis g(n) soll in Register 2 gespeichert werden. Beschreiben Sie die Aufgaben der verwendeten Register und kommentieren Sie die wesentlichen Schritte Ihres Programms.

(b) Gegeben sei das folgende Registermaschinenprogramm, welches zu jeder Eingabe $n \in \mathbb{N}_0$ einen Funktionswert f(n) berechnet. Das Ergebnis befindet sich am Ende der Berechnung in Register 4.

Untersuchen Sie, welche Funktion f berechnet wird. Gehen Sie dabei insbesondere auf die Bedeutung der verwendeten Register ein. Versuchen Sie zudem, die Anzahl der Rechenschritte abzuschätzen (O-Notation).

```
Eingabe n steht in Register 1
 1 CLOAD 1
 2 STORE 2
3 STORE 3
 4 STORE 4
5 LOAD 1
 6 IF c(0) < 2 GO TO 18
 7 LOAD 2
8 ADD 3
9 STORE 4
10 LOAD 3
11 STORE 2
12 LOAD 4
13 STORE 3
14 LOAD 1
15 CSUB 1
16 STORE 1
17 GO TO 6
18 END
   Ergebnis f(n) steht in Register 4
```

Aufgabe 1.4 2+2+2 Punkte

Sei A ein Feld mit den Einträgen $1, \ldots, n$ in beliebiger Reihenfolge. Betrachten Sie folgenden Algorithmus.

```
Eingabe: A for i=1,\ldots,n-1 do Bestimme das Minimum der Einträge A[i],\ldots,A[n] und den zugehörigen Index j. Falls j\neq i, dann vertausche A[i] und A[j]. end for Ausgabe: A
```

- (a) Welches Problem löst der Algorithmus? Beweisen Sie Ihre Aussage mit Hilfe einer Invariante.
- (b) Wie viele Vergleiche werden in Durchlauf i durchgeführt? Wie viele Vergleiche benötigt der Algorithmus insgesamt? Verwenden Sie O-Notation.
- (c) Wie viele Vertauschungen führt der Algorithmus mindestens/höchstens durch? Geben Sie jeweils eine Eingabe an, bei der entsprechend oft vertauscht wird.