Online-Algorithmen Sommersemester 2012 Abgabe: 24.05.2012 in der Vorlesung

Übungsblatt 6

Aufgabe 6.1 6 Punkte

Wir haben für die Herleitung von Schranken für das k-Server-Problem, wie zum Beispiel in Theorem 3.3 und in Lemma 3.7, ausgenutzt, dass jeder deterministische Algorithmus A für das k-Server-Problem durch einen faulen deterministischen Algorithmus B ersetzt werden kann, dessen Kosten nicht größer sind. Beweisen Sie diese Aussage.

Aufgabe 6.2 2+2+2 Punkte

Für das k-Server-Problem auf der Linie haben wir verschiedene Aussagen über die optimale Zuordnung zweier Punktmengen verwendet. Seien $0 \le x_1 \le \ldots \le x_k \le 1$ und $0 \le y_1 \le \ldots \le y_k \le 1$ Punkte auf der Linie. Als Abstandsmaß betrachten wir die Standardmetrik d(x,y) = |x-y|. Die Zuordnung der Punkte y_j zu den Punkten x_i erfolgt durch eine Permutation $\pi \in \mathcal{S}_k$. Die Distanz beider Punktmengen bzgl. π ist dann $\delta_{\pi} = \sum_{i=1}^k d(x_i, y_{\pi(i)})$. Wir bezeichnen eine Zuordnung π^* als optimal, wenn $\delta_{\pi^*} = \min_{\pi \in \mathcal{S}_k} \delta_{\pi}$ gilt.

- (a) Wir betrachten die identische Abbbildung π_{id} , gegeben durch $\pi_{id}(i) = i$. Zeigen Sie, dass π_{id} optimal ist.
- (b) Sei $j \in \{1, ..., k\}$ ein Index mit $y_j \leq x_1$. Zeigen Sie, dass es eine optimale Zuordnung π mit $\pi(1) = j$ gibt.
- (c) Seien $i \in \{1, ..., k-1\}$ und $j \in \{1, ..., k\}$ Indizes mit $x_i \le y_j \le x_{i+1}$. Zeigen Sie, dass es eine optimale Zuordnung π mit $\pi(i) = j$ oder mit $\pi(i+1) = j$ gibt.

Aufgabe 6.3 6 Punkte

Wir betrachten das k-Server-Problem auf Bäumen, bei dem die Server o_1, \ldots, o_k auf Knoten des Baumes und die Server s_1, \ldots, s_k auf Knoten oder Kanten des Baumes stehen. Wir verwenden die Metrik und den Nachbarschaftsbegriff aus der Vorlesung. Die Optimalität einer Zuordnung von Servern s_i zu Servern o_j definieren wir wie in Aufgabe 6.2.

Sei $j \in \{1, ..., k\}$ ein beliebiger Index und sei I die Menge der Indizes i der Nachbarn s_i von o_j . Zeigen Sie, dass es eine optimale Zuordnung π mit $\pi(i) = j$ für ein $i \in I$ gibt.

 $\mathit{Hinweis}$: Zeigen Sie zunächst, dass man ohne Beschränkung der Allgemeinheit davon ausgehen kann, dass alle Server s_i auf einem Knoten des Baumes stehen.

Aufgabe 6.4 6 Punkte

Wir betrachten den DC-Algorithmus für das k-Server-Problem auf Bäumen. Seien s_1, \ldots, s_m die Server, die sich innerhalb einer Phase zu einer Anfrage σ_i hinbewegen. Zeigen Sie, dass es für jeden Server $s \in \{s_{m+1}, \ldots, s_k\}$, genau einen Server $s' \in \{s_1, \ldots, s_m\}$ gibt, zu dem sich die Distanz d(s, s') vergrößert.