

Online-Algorithmen Sommersemester 2012 Abgabe: 03.05.2012 in der Vorlesung

Übungsblatt 4

Aufgabe 4.1 6 Punkte

Zeigen Sie, dass jeder zusammenhängende ungerichtete gewichtete Graph mit positiven Kantengewichten eine Metrik auf seinen Knoten induziert. Zeigen Sie umgekehrt, dass jeder endliche metrische Raum durch einen zusammenhängenden ungerichteten gewichteten Graphen mit positiven Kantengewichten dargestellt werden kann.

Aufgabe 4.2 6 Punkte

Geben Sie einen optimalen Offline-Algorithmus für das k-Server-Problem an, der auf dynamischer Programmierung basiert. Welche Laufzeit besitzt Ihr Algorithmus?

Aufgabe 4.3 6 Punkte

Es sei G=(V,E) ein Graph mit einer Metrik $d\colon V\times V\to \mathbb{R}_{\geq 0}.$ Mit

$$\delta(G) = \frac{\max_{u \neq v} d(u, v)}{\min_{u \neq v} d(u, v)}$$

bezeichnen wir die $Aspect\ Ratio$ von G. Wir betrachten die natürliche Übertragung von Markierungsalgorithmen auf das k-Server-Problem: Knoten entsprechen verschiedenen Seiten und Anfragen von Knoten, auf denen zur Zeit kein Server steht, entsprechen Seitenfehlern. Daraus ergibt sich eine Phaseneinteilung und der Begriff eines markierten Knotens analog zum Paging-Problem.

Zeigen Sie, dass jeder Markierungsalgorithmus δk -kompetitiv ist, wobei $\delta = \delta(G)$ die Aspect Ratio von G ist.

Aufgabe 4.4 6 Punkte

Wir betrachten die natürliche Übertragung von FIFO und LRU auf das k-Server-Problem. Zeigen Sie, dass es für jeden Wert $\delta \geq 1$ und jede Zahl $k \geq 2$ einen gewichteten Graphen G mit Aspect Ratio δ gibt, auf dem FIFO und LRU keinen kompetitiven Faktor $r < \delta$ erreichen.