
Evaluation of Online Strategies

for Reordering Buffers∗

Matthias Englert Heiko Röglin Matthias Westermann

Department of Computer Science

RWTH Aachen, D-52056 Aachen, Germany
{englert, roeglin, marsu}@cs.rwth-aachen.de

Abstract

A sequence of objects which are characterized by their color has to
be processed. Their processing order influences how efficiently they can
be processed: Each color change between two consecutive objects pro-
duces costs. A reordering buffer which is a random access buffer with
storage capacity for k objects can be used to rearrange this sequence
online in such a way that the total costs are reduced. This concept is
useful for many applications in computer science and economics.

The strategy with the best known competitive ratio is MAP. An
upper bound of O(log k) on the competitive ratio of MAP is known
and a non-constant lower bound on the competitive ratio is not known
[EW05]. Based on theoretical considerations and experimental evalua-
tions, we give strong evidence that the previously used proof techniques
are not suitable to show an o(

√
log k) upper bound on the competitive

ratio of MAP. However, we also give some evidence that in fact MAP
achieves a competitive ratio of O(1).

Further, we evaluate the performance of several strategies on ran-
dom input sequences experimentally. MAP and its variants RC and
RR clearly outperform the other strategies FIFO, LRU, and MCF. In
particular, MAP, RC, and RR are the only known strategies whose
competitive ratios do not depend on the buffer size. Furthermore,
MAP achieves the smallest competitive ratio.

∗The first and the last author are supported by DFG grant WE 2842/1. The second
author is supported by DFG grants VO 889/2 and WE 2842/1. An earlier version of
this work appeared in Proceedings of the 5th International Workshop on Experimental
Algorithms (WEA), 2006 [ERW06].

1

1 Introduction

Frequently, a number of tasks has to be processed and their processing order
influences how efficiently they can be processed. Hence, a reordering buffer
can be expedient to influence the processing order. This concept is useful
for many applications in computer science and economics. In the following,
we give an example (for further examples see [BL05, EW05, GSV04, KP04,
KP06b, RSW02]).

In computer graphics, a rendering system displays 3D scenes which are
composed of primitives. In current rendering systems, the state changes
performed by the graphics hardware are a significant factor for the perfor-
mance. A state change occurs when two consecutively rendered primitives
differ in their attribute values, e. g., in their texture or shader program.
These state changes slow down a rendering system. To reduce the costs of
the state changes, a reordering buffer can be included between application
and graphics hardware. Such a reordering buffer which is a random access
buffer with limited memory capacity can be used to rearrange the incoming
sequence of primitives online in such a way that less state changes occur
[KRSW04].

1.1 The Model

An input sequence σ = σ1σ2 · · · of objects which are only characterized by
a specific attribute has to be processed. To simplify matters, we suppose
that the objects are characterized by their color, and, for each object σi, let
c(σi) denote the color of σi. A reordering buffer which is a random access
buffer with storage capacity for k objects can be used to rearrange the input
sequence in the following way.

The first object of σ that is not handled yet can be stored in the re-
ordering buffer, or objects currently stored in the reordering buffer can
be removed. These removed objects result in an output sequence σπ−1 =
σπ−1(1)σπ−1(2) · · · which is a permutation of σ. We suppose that the reorder-
ing buffer is initially empty and, after processing the whole input sequence,
the buffer is empty again.

For an input sequence σ, let CA(σ) denote the costs of a strategy A, i. e.,
the number of color changes in the output sequence. The goal is to minimize
the costs CA(σ).

The notion of an online strategy is intended to formalize the realistic
scenario, where the strategy does not have knowledge about the whole input
sequence in advance. The online strategy has to serve the input sequence

2

σ one after the other, i. e., a new object is not issued before there is a free
location in the reordering buffer.

Online strategies are typically evaluated in a competitive analysis. In
this kind of analysis the costs of the online strategy are compared with the
costs of an optimal offline strategy. For an input sequence σ, let COPT(σ)
denote the costs produced by an optimal offline strategy. An online strategy
is denoted as α-competitive if it produces costs at most α ·COPT(σ)+ κ, for
each sequence σ, where κ is a term that does not depend on σ. The value
α is also called the competitive ratio of the online strategy.

1.2 The Strategies

We only consider lazy strategies, i. e., strategies that fulfill the following two
properties.

• If an additional object can be stored in the buffer, a lazy strategy does
not remove an object from the buffer.

• An active color is selected, and, as long as objects with the active color
are stored in the buffer, a lazy strategy does not make a color change.

Hence, a lazy strategy has only to specify how to select a new active color.
Note that every strategy, in particular every optimal offline strategy, can be
transformed into a lazy strategy without increasing the costs.

First-In-First-Out (FIFO). This strategy assigns time stamps to each
color stored in the buffer. Initially, the time stamps of all colors are unde-
fined. When an object is stored in the buffer and the color of this object
has an undefined time stamp, the time stamp is set to the current time.
Otherwise, it remains unchanged. FIFO selects as new active color the color
with the oldest time stamp and resets this time stamp to undefined. This is
a very simple strategy that does not analyze the input stream. The buffer
acts like a sliding window over the input stream in which objects with the
same color are combined.

Least-Recently-Used (LRU). Similar to FIFO, this strategy assigns
time stamps to each color stored in the buffer. Initially, the time stamps of
all colors are undefined. When an object is stored in the buffer, the time
stamp of its color is set to the current time. LRU selects as new active
color the color with the oldest time stamp and resets this time stamp to
undefined. LRU and also FIFO tend to remove objects from the buffer too
early [RSW02].

3

Most-Common-First (MCF). This fairly natural strategy tries to clear
as many locations as possible in the buffer, i. e., it selects as new active color
a color that is most common among the objects currently stored in the buffer.
MCF also fails to achieve good performance guarantees since it keeps objects
with a rare color in the buffer for a too long period of time [RSW02]. This
behavior wastes valuable storage capacity that could be used for efficient
buffering otherwise.

Maximum-Adjusted-Penalty (MAP). This strategy, which is intro-
duced and analyzed in a non-uniform variant of our model in [EW05], pro-
vides a trade-off between the storage capacity used by objects with the same
color and the chance to benefit from future objects with the same color. We
present an adapted version of MAP for our uniform model which is similar
to the Bounded-Waste strategy [RSW02]. A penalty counter is assigned to
each color stored in the buffer. Informally, the penalty counter for color
c is a measure for the storage capacity that has been used by all objects
of color c currently stored in the buffer. Initially, the penalty counters for
all colors are set to 0. MAP selects as new active color a color with maxi-
mal penalty counter and the penalty counters are updated as follows: The
penalty counter for each color c is increased by the number of objects of
color c currently stored in the buffer, and the penalty counter of the new
active color is reset to 0.

Random-Choice (RC). Since the computational overhead of MAP is
relatively large, we present more practical variants of MAP. RC which is
a randomized version of MAP selects as new active color the color of an
uniformly at random chosen object from all objects currently stored in the
buffer. Note that RC can also be seen as a randomized version of MCF. Even
if RC is much simpler than MAP, random numbers have to be generated.

Round-Robin (RR). This strategy is a very efficient variant of RC. It
uses a selection pointer which points initially to the first location in the
buffer. RR selects as new active color the color of the object the selection
pointer points to and the selection pointer is shifted in a round robin fash-
ion to the next location in the buffer. We suppose that RR has the same
properties as RC on typical input sequences.

4

1.3 Previous Work

Räcke, Sohler, and Westermann [RSW02] show that several standard strate-
gies are unsuitable for a reordering buffer, i. e., the competitive ratio of FIFO
and LRU is Ω(

√
k) and the competitive ratio of MCF is Ω(k), where k de-

notes the buffer size. Further, they present the deterministic Bounded-Waste
strategy (BW) and prove that BW achieves a competitive ratio of O(log2 k).

Englert and Westermann [EW05] study a non-uniform variant of our
model: Each color change to color c produces non-uniform costs bc. As
main result, they present the deterministic MAP strategy and prove that
MAP achieves a competitive ratio of O(log k).

The offline variant of our model is studied in [BL05, KP04]. However,
the goal is to maximize the number of saved color changes. Note that an
approximation of the minimum number of color changes is preferable, if it is
possible to save a large number of color changes. Kohrt and Pruhs [KP04]
present a polynomial-time offline algorithm that achieves an approximation
ratio of 20. Further, they mention that optimal algorithms with running
times O(nk+1) and O(nm+1) can be obtained by using dynamic program-
ming, where k denotes the buffer size and m denotes the number of different
colors. Bar-Yehuda and Laserson [BL05] study a more general non-uniform
maximization variant of our model. They present a polynomial-time offline
algorithm that achieves an approximation ratio of 9.

Khandekar and Pandit [KP06a, KP06b] consider reordering buffers on a
line metric. This metric is motivated by an application to disc scheduling:
Requests are categorized according to their destination track on the disk,
and the costs are defined as the distance between start and destination
track. For a disc with n uniformly-spaced tracks, they present a randomized
online strategy and show that this strategy achieves a competitive ratio of
O(log2 n) in expectation against an oblivious adversary [KP06b]. They also
present a quasi-polynomial-time offline algorithm that achieves a constant
approximation ratio [KP06a].

Krokowski et al. [KRSW04] examine the previously mentioned rendering
application. They use a small reordering buffer (storing less than hundred
references) to rearrange the incoming sequence of primitives online in such a
way that the number of state changes is reduced. Due to its simple structure
and its low memory requirements, this method can easily be implemented
in software or even hardware. In their experimental evaluation, this method
typically reduces the number of state changes by an order of magnitude
and the rendering time by roughly 30%. Furthermore, this method typi-

5

cally achieves almost the same rendering time as an optimal, i. e., presorted,
sequence without a reordering buffer.

1.4 Our Contributions

In Section 2, we study the worst case performance of MAP. Recall that an
upper bound of O(log k) on the competitive ratio of MAP is known and a
non-constant lower bound on the competitive ratio is not known [EW05].
Hence, a natural question is whether it is possible to improve the upper
bound on the competitive ratio of MAP. The proof of the upper bound
consists of two parts. First, it is shown that the competitive ratio of MAP4k

against OPTk is 4, where An denotes the strategy A with buffer size n
and OPT denotes an optimal offline strategy. Finally, it is proven that
the competitive ratio of OPTk against OPT4k is O(log k). As we see, the
logarithmic factor is lost solely in the second part of the proof.

We present theoretical considerations and experimental results which
give strong evidence that the competitive ratio of OPTk against OPT4k

is Ω(
√

log k). This implies that the previously used proof techniques are
not suitable to prove an o(

√
log k) upper bound on the competitive ratio of

MAP. However, we also give some evidence that in fact MAP achieves a
competitive ratio of O(1).

In Section 3, we evaluate the performance of several strategies on random
input sequences experimentally. MAP and its variants RC and RR clearly
outperform the other strategies FIFO, LRU, and MCF. In particular, MAP,
RC, and RR are the only known strategies whose competitive ratios do not
depend on the buffer size.

2 Worst Case Performance of MAP

In Section 2.1, we give an alternative proof that the competitive ratio of
OPTk against OPT4k is O(log k) in our uniform model. This proof is based
on a potential function. In Section 2.2, we exploit properties of this poten-
tial function to deterministically generate input sequences which give strong
evidence that this result cannot be improved much. In more detail, based
on our experimental evaluation in Section 2.3, we conjecture that the com-
petitive ratio of OPTk against OPT4k is Ω(

√
log k). As a consequence, the

proof technique in [EW05], which is also implicitly contained in the proof of
[RSW02], is not suitable to show an o(

√
log k) upper bound on the compet-

itive ratio of MAP.

6

2.1 Theoretical Foundations

In this section, we give an alternative proof for the following theorem.

Theorem 1 ([EW05]). The competitive ratio of OPTk against OPT4k is
O(log k).

Proof. Fix an input sequence σ and an optimal offline strategy OPT4k. Let
σπ−1 denote the output sequence of OPT4k. Suppose that σπ−1 consists of
m color blocks B1, . . . Bm, i. e., σπ−1 = B1 · · ·Bm and all objects in each
color block have the same color and the objects in each color block Bi have
a different color than the objects in color block Bi+1. Let c(Bi) denote the
color of the objects in color block Bi. Without loss of generality assume
that c(B1) = 1, c(B2) = 2, . . . c(Bm) = m, i. e., the color of each color block
is different from the colors of the other color blocks. This does not change
the costs of OPT4k and can obviously only increase the costs of OPTk.

Consider the execution of a strategy A, and fix a time step (a new time
step begins with each storage or removal of an object). We denote a color c
as finished if all objects of color c have occurred in the output sequence of A.
Otherwise, color c is denoted as unfinished. Let f = min{c|c is unfinished}
denote the first unfinished color, and let d(c) = c− f denote the distance of
color c. Then, the potential of color c is defined as Φ(c) = n(c) · d(c), where
n(c) denotes the number of objects of color c currently stored in the buffer
of A. For each color c, we define a counter p(c), initially set to 0. Intuitively,
the counter p(c) indicates how many objects with a color strictly larger than
c have occurred in the output sequence of A. Whenever A moves an object
of color c to the output sequence, for each f ≤ i < c, p(i) is increased by
one.

Now, we describe the simple algorithm GREEDYk (f , d(c), n(c), Φ(c),
and p(c) are defined w. r. t. GREEDYk). Note that the accumulated poten-
tial Φ, which is initially set to 0, is introduced but not used in this algorithm.

1. Calculate the first unfinished color f . As long as n(f) 6= 0, move
objects of color f to the output sequence. If color f becomes finished,
repeat step 1.

2. Calculate a color q ∈ arg maxc Φ(c) with maximum potential. Move
n(q) objects of color q to the output sequence. Increase the accumu-
lated potential Φ by Φ(q). Proceed with step 1.

Observe that GREEDYk is an offline algorithm since it has to know the
output sequence of OPT4k. In the following, it is shown that the competitive
ratio of GREEDYk against OPT4k is O(log k).

7

The following lemma provides an upper bound on the counters. It implies
for the accumulated potential Φ ≤ 8k ·m since the accumulated potential Φ
can also be expressed as Φ =

∑
c p(c).

Lemma 2. For each color c, p(c) ≤ 8k.

Proof. Observe that p(f) ≥ p(f + 1) ≥ · · · ≥ p(m) and that counters for
colors less than f do not change their values anymore. Hence, it suffices
to show that p(f) ≤ 8k. This is done by induction over the iterations of
GREEDYk. Fix an iteration of GREEDYk. We distinguish the following
two cases.

• Suppose that p(f) ≤ 7k at the beginning of the iteration.

Then, p(f) ≤ 8k at the end of this iteration since p(f) is increased by
at most k in step 2 and the counters are only increased in step 2.

• Suppose that p(f) > 7k at the beginning of the iteration.

Then, GREEDYk has moved more than 7k objects with a color larger
than f to its output sequence. Due to its buffer size, OPT4k has moved
more than 3k of these objects to its output sequence. However, this
implies that OPT4k has moved the last object of color f to its output
sequence more than 3k time steps ago. Hence, the last object of color
f has already entered the buffer of GREEDYk. As a consequence, the
unfinished color f becomes finished in step 1 of this iteration.

This concludes the proof of the lemma.

Due to the following lemma, each iteration of GREEDYk increases the
accumulated potential Φ by at least k

1+ln k
.

Lemma 3. If n(f) = 0 and the buffer contains k objects, maxc Φ(c) ≥
k

1+ln k
.

Proof. First of all, observe that
∑

c>f n(c) = k, since, for each color c ≤ f ,
n(c) = 0 and the buffer contains k objects. Define q = maxc Φ(c). Obviously,
for each i ≥ 1, n(f + i) ≤ ⌊q/i⌋. In particular, for each i > q, n(f + i) = 0.
Hence,

k =

q∑

i=1

n(f + i) ≤
q∑

i=1

q

i
= q · Hq ,

where Hq =
∑q

i=1
1
i

denotes the q-th harmonic number.

8

Suppose that q < k
1+ln k

. Then

k ≤ q · Hq < q · Hk ≤ q · (1 + ln k) < k ,

which is a contradiction.

Combining the results of the two lemmata above yields that there are
at most 8m · (1 + ln k) executions of step 2 of GREEDYk. The number of
executions of step 1 can exceed the number of executions of step 2 by at
most m since step 1 is only repeated when a color becomes finished. Hence,
GREEDYk generates at most 16m · (1 + ln k) + m + k color changes. Recall
that OPT4k generates m− 1 color changes. This concludes the proof of the
theorem.

2.2 Generating Input Sequences

In this section, we describe our approach to deterministically generate input
sequences for which MAPk loses a logarithmic factor compared to OPT8k.
To some extend, the buffers sizes are chosen arbitrarily. Our construction
can be generalized canonically to MAPk and OPTa, for each a > k.

The main idea is to use the accumulated potential Φ defined in the proof
of Theorem 1. The generated input sequences consist of objects with m
different colors, and at most 8k − 1 objects of each of the m colors. The
sequences are intended to have the property that MAPk can increase the
accumulated potential Φ by only O(k/ log k) with each color change, and
the accumulated potential Φ is Ω(m · k) after the sequences are processed.
As a consequence, MAPk makes Ω(m · log k) color changes for these input
sequences. However, OPT8k is able to rearrange these input sequences in
such a way that the objects of each color form a consecutive block, i. e., the
number of color changes made by OPT8k is m − 1. Hence, MAPk should
lose an Ω(log k) factor compared to OPT8k.

The following algorithm for generating deterministic input sequences is
based on the proof of Lemma 3. The first 8k − 1 objects are, for each
1 ≤ i ≤ Θ(k/ log k), ⌈q/i⌉ objects of color i, with q = 8k/ log k. Then, the
algorithm proceeds in phases corresponding to the last unfinished color f .
At the beginning of phase f , let n(c) denote the number of objects of color
c currently stored in the buffer of MAPk, and let s(c) denote the number
of objects of color c included in the input sequence so far. In phase f , s(f)
objects of colors larger than f followed by the last object of color f are
appended to the input sequence.

9

At the beginning of phase f , the algorithm tries to restore a situation
in which the accumulated potential Φ can only be increased by O(k/ log k)
and OPT8k is still able to rearrange the input sequence properly. At the
beginning of phase f , the length of the input sequence created so far is
8k−1+ s(1)+ s(2)+ · · ·+ s(f −1). Observe that s(1)+ s(2)+ · · ·+ s(f −1)
of these objects have colors smaller than f and 8k − 1 of these objects have
colors larger or equal to f . Hence, the number of objects having a color
larger than f so far is 8k − 1 − s(f). Due to the restriction that OPT8k

is able to rearrange the input sequence into an output sequence with only
m − 1 color changes, at most 8k − 1 objects with a color larger than f can
precede the last object of color f . Hence, at most s(f) objects of colors
larger than f can be appended before the last object of color f is appended
to the input sequence.

According to Lemma 3, the algorithm should achieve n(f + i) ≈ q/i.
Hence, max{0, ⌈q⌉−n(f +1)} objects of color f +1, max{0, ⌈q/2⌉−n(f +2)}
objects of color f+2, . . . are appended to the input sequence, until altogether
s(f) objects have been appended in this phase. Then, the phase is finished
by appending the last object of color f to the input sequence. In Figure 1, we
present the pseudocode of the algorithm for generating the input sequences.

We expect that the accumulated potential Φ is Ω(m · k) after the gener-
ated input sequence has been processed by MAPk. To see this, recall that,
for each color f , the last object of color f is preceded by 8k − 1 objects of
colors larger than f . Hence, MAPk moves at least 7k− 1 of these objects to
the output sequence before moving the last object of color f to the output
sequence, and, as a consequence, p(f) ≥ k. For GREEDYk, we know that
Φ =

∑
c p(c). This is not necessarily true for MAPk. However, this is true

for a slightly differently defined potential Φ(c) = n′(c) · d(c). This potential
is not based on the number n(c) of objects of color c currently stored in the
buffer, but on the number n′(c) of objects of color c moved to the output
sequence when changing to color c. Observe that n(c) and n′(c) differ only
if during moving the objects of color c to the output sequence additional ob-
jects of this color arrive. We expect that for the generated input sequences
n(c) and n′(c) usually do not differ much.

2.3 Experimental Evaluation

Figure 2 depicts the competitive ratios of MAPk against OPT8k on the
generated input sequences for buffer sizes k1, . . . k85 with k1 = 1000 and
ki = ⌊ki−1 · 11/10⌋ + 1. A regression analysis with functions of the type
a · ln k + b results in 0.918109 · ln k + 1.33176 where the sum of the squared

10

// notations
q := 8k/ log k;
qi := ⌈q⌉ + ⌈q/2⌉ + · · · + ⌈q/i⌉ for i ≥ 1;

// first 8k − 1 objects
j := maxi{qi < 8k − 1};
for i := 1 to j do append(⌈q/i⌉, i);
append(8k − 1 − qj, j + 1);

// phases f = 1, . . . m − 1
for f := 1 to m − 1 do

n(c) := # objects of color c currently stored in the buffer of MAPk;
s(c) := # objects of color c included in the input sequence so far;

// append s(f) + 1 elements to the sequence
rem := s(f);
for j := 1 to m − f do

append(min{max{0, ⌈q/j⌉ − n(f + j)}, rem}, f + j);
rem := rem − min{max{0, ⌈q/j⌉ − n(f + j)}, rem};

end for

while rem > 0 do
for j := 1 to m − f do

append(min{⌈q/j⌉, rem}, f + j);
rem := rem − min{⌈q/j⌉, rem};

end for
end while

append(1, f);
end for

Figure 1: The pseudocode of the algorithm for generating the input se-
quences. The statement append(x, y) is used to add x elements of color y to
the sequence.

residuals is 0.0303205. Using functions of the type a · ln k+b · ln ln k+c yields
0.843897 · ln k + 0.786948 · ln ln k + 0.279742 where the sum of the squared
residuals is only 0.00472631.

11

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1000 10000 100000 1e+06

co
m

pe
tit

iv
e

ra
tio

k

buffer size 8k
buffer size 4k

Figure 2: Competitive ratios of MAPk against OPT4k and OPT8k on the
generated input sequences and resulting functions for regression analysis
with a · ln k + b · ln ln k + c.

Further, Figure 2 depicts the competitive ratios of MAPk against OPT4k

on the generated input sequences. Unfortunately, there are periodic fluctu-
ations in these competitive ratios which results in a larger sum of squared
residuals. However, a regression analysis with functions of the type a · ln k+
b · ln ln k + c results in 0.730515 · ln k +0.615999 · ln ln k +0.440412 where the
sum of the squared residuals is 0.0373066 and no residual is greater than
0.043559.

Based on the experimental evaluation, we conjecture the following.

Conjecture 4. The competitive ratio of MAP4k against OPT32k is Ω(log k).

Now, we can conclude the following theorem. If we take the experi-
mental evaluation for smaller factors between the buffer sizes into account,
we can make the stronger conjecture that the competitive ratio of MAP4k

against OPT16k is Ω(log k), and the o(3
√

log k) term in the following theorem
improves to o(

√
log k).

Theorem 5. OPTk cannot achieve a competitive ratio of o(3
√

log k) against
OPT4k if Conjecture 4 is true.

Proof. Suppose for contradiction that the competitive ratio of OPTk against
OPT4k is o(3

√
log k). Then, the competitive ratio of OPTk against OPT64k

12

is o(log k). In the first part of the proof of Theorem 4 in [EW05] it is shown
that the competitive ratio of MAP4k against OPTk is 4. As a consequence,
the competitive ratio of MAP4k against OPT64k is o(log k) which is a con-
tradiction to Conjecture 4.

Our actual interest is the competitive ratio of MAP. Is it possible to
show a non-constant lower bound on the competitive ratio of MAP or to
improve the upper bound? Based on our experimental evaluation, the proof
technique in [EW05, RSW02] is not suitable to show an o(

√
log k) upper

bound on the competitive ratio of MAP since this would require that the
competitive ratio of OPTk against OPT4k is o(

√
log k).

However, we have evidence that MAP achieves in fact a competitive ratio
of O(1) in our uniform model. MAP is always optimal, i. e., it achieves a
competitive ratio of 1, for the generated input sequences. In addition to
the following observations, this indicates a small competitive ratio of MAP.
Each Ω(

√
log k) lower bound on the competitive ratio of MAP implies an

Ω(
√

log k) lower bound on the competitive ratio of OPTk against OPT4k.
Hence, the input sequences used in such a lower bound have to assure that
the potential gained in step 2 of GREEDYk is not too large. However, our
sequences are constructed to have exactly this property. As a consequence,
any major modification to our generated input sequences will probably fail
to show an Ω(

√
log k) lower bound on the competitive ratio of MAP.

3 Random Input Sequences

In this section, we evaluate the performance of several strategies on random
input sequences experimentally. Since an efficient optimal offline algorithm
is not known, we cannot simply generate random input sequences and eval-
uate the performance of the strategies by comparing their number of color
changes with the optimal number of color changes. Therefore, we first intro-
duce a technique to generate random input sequences with known optimum.
Finally, the experimental evaluation is presented in detail.

3.1 Input Sequences with Known Optimum

Fix an input sequence σ and an optimal offline strategy OPTk. Let σopt

denote the output sequence of OPTk. Suppose that σopt consists of m color
blocks B1, . . . Bm, i. e., σopt = B1 · · ·Bm and all objects in each color block
have the same color and the objects in each color block Bi have a different
color than the objects in color block Bi+1. Without loss of generality assume

13

that the color of each color block is different from the colors of the other
color blocks. This does not change the costs of OPTk and can obviously
only increase the costs of any other strategy.

The following result is given in [EW05]: For each input sequence σ, the
permutation σπ−1 = σπ−1(1)σπ−1(2) · · · of σ = σ1σ2 is an output sequence of
a strategy with buffer size k if and only if π−1(i) < i+k, for each i. Hence, a
random input sequence with known optimal number of color changes can be
generated as follows. First, we determine an output sequence σopt of OPTk.
This output sequence is completely characterized by the number of color
blocks m and the color block lengths l1, . . . lm, i. e., li denotes the number of
objects in the i-th color block. Then, a permutation π with π−1(i) < i + k,
for each i, is chosen uniformly at random among all permutations with this
property. In this way, we get a random input sequence σopt

π for which OPTk

makes m−1 color changes. Observe that different permutations can lead to
the same input sequence.

3.2 Experimental Evaluation

We evaluate the performance of FIFO, LRU, MAP, MCF, RC, and RR on
different kinds of random input sequences experimentally.

Constant color block lengths. Figure 3 depicts the competitive ratios
of the strategies for buffer sizes k1, . . . k139 with k1 = 10 and ki = ⌊ki−1 ·
21/20⌋ + 1 on generated input sequences with m = ki + 1 and color block
lengths l1 = · · · = lm = ki. For each buffer size, we average over 50 runs.
The variances are very small and decreasing with increasing buffer sizes. For
buffer sizes larger than 1000, the variances are below 0.006.

The competitive ratios of FIFO and LRU increase with the buffer size on
these non-malicious inputs. RC and RR presumably achieve small constant
competitive ratios. MCF and MAP achieve the best competitive ratios.
MCF is optimal for buffer sizes greater than 49, and, for buffer sizes greater
than 317, MAP is also optimal.

Uniformly chosen color block lengths. Figure 4 depicts the com-
petitive ratios of the strategies for buffer sizes k1, . . . k139 on the follow-
ing generated input sequences. Let u1, u2, . . . denote a sequence of inde-
pendent random variables distributed uniformly between 1 and k. Then,
m = maxi{u1 + · · · + ui < k2 + k} + 1 and, for 1 ≤ i < m, li = ui and
lm = k2 + k − (u1 + · · · + um−1). For each buffer size, we average over 50

14

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000 10000

co
m

pe
tit

iv
e

ra
tio

k

LRU
FIFO

RC
RR

MAP
MCF

Figure 3: Competitive ratios on random input sequences with constant color
block lengths.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000 10000

co
m

pe
tit

iv
e

ra
tio

k

MCF
LRU
FIFO

RC
RR

MAP

Figure 4: Competitive ratios on random input sequences with uniformly
chosen color block lengths.

runs. The variances, except for MCF, are very small and decreasing with in-
creasing buffer sizes. For buffer sizes larger than 1000, the variances, except
for MCF, are below 0.006.

15

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 100 1000 10000

co
m

pe
tit

iv
e

ra
tio

k

LRU
MCF
FIFO

RC
RR

MAP

Figure 5: Competitive ratios of the strategies with buffer size k against an
optimal offline strategy with buffer size 8k on random input sequences with
constant color block lengths.

The competitive ratios of FIFO, LRU, and, in contrast to the first set of
input sequences, MCF increase with the buffer size on these non-malicious
input sequences. MAP, RC, and RR presumably achieve small constant
competitive ratios.

Different buffer sizes. Figure 5 depicts the competitive ratios of the
strategies with buffer size ki against an optimal offline strategy with buffer
size 8ki for k1, . . . k139 on generated input sequences with m = ki + 8 and
color block lengths l1 = · · · = lm = ki. For each buffer size, we average
over 50 runs. The variances, except for LRU and MCF, are very small and
decreasing with increasing buffer sizes. For buffer sizes larger than 1000, the
variances, except for LRU and MCF, are below 0.003.

The competitive ratio of MAP with buffer size k against an optimal
offline strategy with buffer size 8k is presumably constant. Hence, these
experiments justify the sophisticated deterministic generation of input se-
quences we used to obtain Conjecture 4, as they show that random input
sequences do not suffice for that purpose.

16

References

[BL05] R. Bar-Yehuda and J. Laserson. 9-approximation algorithm for
sorting buffers. In Proceedings of the 3rd Workshop on Approx-
imation and Online Algorithms (WAOA), 2005.

[ERW06] M. Englert, H. Röglin, and M. Westermann. Evaluation of online
strategies for reordering buffers. In Proceedings of the 5th Inter-
national Workshop on Experimental Algorithms (WEA), pages
183–194, 2006.

[EW05] M. Englert and M. Westermann. Reordering buffer management
for non-uniform cost models. In Proceedings of the 32nd Inter-
national Colloquium on Automata, Languages and Programming
(ICALP), pages 627–638, 2005.

[GSV04] K. Gutenschwager, S. Spieckermann, and S. Voss. A sequen-
tial ordering problem in automotive paint shops. International
Journal of Production Research, 42(9):1865–1878, 2004.

[KP04] J. Kohrt and K. Pruhs. A constant approximation algorithm
for sorting buffers. In Proceedings of the 6th Latin American
Symposium on Theoretical Informatics (LATIN), pages 193–202,
2004.

[KP06a] R. Khandekar and V. Pandit. Offline sorting buffers on line. In
Proceedings of the 17th International Symposium on Algorithms
and Computation (ISAAC), 2006. To appear.

[KP06b] R. Khandekar and V. Pandit. Online sorting buffers on line.
In Proceedings of the 23rd Symposium on Theoretical Aspects of
Computer Science (STACS), pages 584–595, 2006.

[KRSW04] J. Krokowski, H. Räcke, C. Sohler, and M. Westermann. Reduc-
ing state changes with a pipeline buffer. In Proceedings of the
9th International Fall Workshop Vision, Modeling, and Visual-
ization (VMV), pages 217–224, 2004.

[RSW02] H. Räcke, C. Sohler, and M. Westermann. Online scheduling for
sorting buffers. In Proceedings of the 10th European Symposium
on Algorithms (ESA), pages 820–832, 2002.

17

